- 博客(3)
- 收藏
- 关注
原创 【顺序栈应用】迷宫求解
本文采用C语言应用顺序栈实现对迷宫问题的求解(走迷宫其实也蛮有意思的)【问题描述】采用“穷举求解”方法,从起点出发,顺某一方向向前探索,若能走通,则继续往前走;否则沿原路返回,换一个方向再继续探索。为了保证在任何位置上都能沿原路返回,需要用一个后进先出的顺序栈结构来保存从起点到当前位置的路径。迷宫如图所示(代码中也可以自己更改):(代码中'#'表示墙壁,‘ ’代表可以通过)【算法思想】假设“当前位置”指的是”在搜索过程中某一时刻所在迷宫图中的某个方块的位置“,则求迷宫的一条路径的算法.
2021-03-16 15:41:06
1745
1
原创 【单幅图像深度处理】代码有关问题解读
本文内容多是个人理解,如有问题望多多指正一、误差:在论文中,使用了三个标准误差测量法来估计单目深度预测的准确性,这三个标准误差测量法是目前最先进的方法[21,22,14,6]中常用的。这些误差是为每个像素定义的,并对图像中的所有像素和数据集中的所有图像进行平均。三个标准误差测量法如下:对训练数据量的鲁棒性: 为了评估对训练量的敏感性,文中通过逐步减少训练数据来模拟该方法在两个数据集上的行为。并没有使用完整的训练集,而是随机抽取一小部分训练数据进行训练。下图中的曲线表明,当训练数据.
2021-03-16 15:35:59
852
2
原创 【Pytorch+torchvision】MNIST手写数字识别(代码附最详细注释)
我想很多人入门深度学习可能都是从这个项目开始的,相当于是机器学习的Hello World。但我第一个深度学习项目是一年前跑的吴恩达的手指数字识别课后作业,感兴趣的读者也可以试着跑一下,写者认为看着机器学习的过程也是非常有意思的。本文代码具有详细注释,便于第一次入门深度学习的读者学习。在本文中,我们将在PyTorch中构建一个简单的卷积神经网络,并使用MNIST数据集训练它识别手写数字。 MNIST包含70,000张手写数字图像: 60,000张用于培训,10,000张用于测试。图像是灰度(..
2021-03-16 15:25:39
5199
6
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人