【剑指offer】面试题10(2)-跳台阶

题目

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

1.思路

这个题是斐波那契数列问题的变形。

思路(1)
【剑指offer】面试题10(1)-斐波那契数列中解答斐波那契数列问题的思路即可:
创建并初始化两个变量FibonacciFirst = F(0)和FibonacciSecond = F(1),在求解过程中不断更新FibonacciFirst和FibonacciSecond,即依次把已经得到的两个数列中间项保存起来,这样就可以根据定义,对斐波那契数列递推地进行求解了,而且不会产生重复计算
时间复杂度是O(n)空间复杂度是O(1)

思路(2)
根据题目可以推理出等式:
到达第 i 阶的方法总数 = 第 i -1 阶方法数 + 第 i -2 阶方法数
所以利用创建一个大小为n的数组就可以根据等式关系求解问题,虽然空间复杂度不如第一种方法,但是代码比较容易理解。
时间复杂度是O(n) ,空间复杂度是O(n) ,

2.代码(Java实现)

// 思路(1)斐波那契
public class Solution {
	public long JumpFloor(int target) {
        if(target == 1) {
            return 1;
        }
        if(target == 2) {
            return 2;
        }
        
        long FibonacciFirst = 1;
        long FibonacciSecond = 2;
        long FibonacciN = 0;
        for (int i = 2; i < target; i ++) {
            FibonacciN = FibonacciFirst + FibonacciSecond;
             
            FibonacciFirst = FibonacciSecond;
            FibonacciSecond = FibonacciN;
        }
        return FibonacciN;
    }
}//时间复杂度: O(n) ;空间复杂度:O(1) 
// 思路(2)借助数组
public class Solution {
    public int JumpFloor(int target) {
        if (target == 1) {
			return 1;
		}
		int[] dp = new int[target];
		dp[0] = 1;
		dp[1] = 2;
		for (int i = 2; i < target; i++) {
			dp[i] = dp[i - 1] + dp[i - 2];
		}
		return dp[target - 1];
    }
}//时间复杂度: O(n) ;空间复杂度:O(n) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值