Pro Android学习笔记(一六八):发布应用(1):测试和适配

文章转载只能用于非商业性质,且不能带有虚拟货币、积分、注册等附加条件。转载须注明出处http://blog.csdn.net/flowingflying/以及作者@恺风Wei

在我们提交一个商用的Android应用前,我们需要确保应用有效。

测试

应用尽可能在不同的设备中进行测试。因为不同设备有不同的硬件规格,有一些提供真机测试的环境(大致是N多台真机通过扩展USB连接到某个服务器上,该服务器对外提供这些真机的应用测试环境,多台这样的服务器基本上可以覆盖市面上流行的机型),也可以利用AVD,配置成不同的设备。

Android SDK提供了Instrumentation类来帮助进行单元测试。不过这个我就很少用了,实际上对于开发人员(非测试人员)只要log做得足够的好就可以了。此外还有UI/Application Exerciser Monkey,它能够产生伪随机事件,如用户点击,触摸,用户手势,用来模拟用户的各种行为,包括不可预测的操作行为。我们编制的测试案例不一定能对所有场景进行覆盖,这个Monkey可以帮助。在adb的shell中使用,具体可以参见http://www.iteedu.com/handset/android/androidmanual/reference/monkey.php。下面是当中的一些摘要,具体使用可以通过--help来显示帮助。

基本语法:

$ adb shell monkey [options] <event-count>

启动你的程序并发送500个随见的事件给程序的例子:

$ adb shell monkey -p your.package.name -v 500</>

在完成开发进行测试/发布之前,我们需要删除我们在代码中不需要的debug信息,检查/res中是否有一些不再使用的文件(例如图片),以确保apk的大小,并有尽可能高的运行效率。

适配不同的屏幕尺寸

Android允许为不同尺寸的屏幕分别进行适配,在res/下,通过不同的文件夹名来标识,例如res/layout-large,具体见Pro Android学习笔记(四):了解Android资源(下)的最后部分“资源和配置的变更”。

在AndroidManifest中有个属性为<supports-screens>,其内容如下:

< supports-screens android:resizeable=["true"| "false"]
         android:smallScreens=["true" | "false"]
         android:normalScreens=["true" | "false"]
         android:largeScreens=["true" | "false"]
         android:xlargeScreens=["true" | "false"]
         android:anyDensity=["true" | "false"]
         android:requiresSmallestWidthDp="integer"
         android:compatibleWidthLimitDp="integer"
         android:largestWidthLimitDp="integer"/ >

有些应用商店对对此进行检查,例如Google Play,如果要支持小屏幕,则需要在此设置上samllScreens,否则不向小屏幕的手机显示你的应用。平板对应的是xLargeScreens,如果我们的应用之提供给平板,则该值为true,其他的均为false。

准备好AndroidManifest.xml

在上传至应用商店之前,AndroidManifest可能需要一些小修改。在设定我们应用包名时,不要使用com.example作为前缀,当然也不能使用com.google,com.android之类的,Google Play会进行检查,但是国内的应用商店就不太清楚,可能不会检查那么多。对于我们的应用,还是考虑严格或者规范地编写,而不是去挑战应用商店的检查情况。

android:icon除了可以作为<application>的属性外,还可以作为activity的属性,为特定的activity设定特定的icon。

如果我们应用对硬件或者平台功能有特定要求,可以在<uses-configuration>和<uses-feature>中进行设置。

<uses-configuration android:reqFiveWayNav=["true" | "false"]
                                android:reqHardKeyboard=["true" | "false"]
                                android:reqKeyboardType=["undefined" | "nokeys" | "qwerty" | "twelvekey"]
                                android:reqNavigation=["undefined" | "nonav" | "dpad" | "trackball" | "wheel"]
                                android:reqTouchScreen=["undefined" | "notouch" | "stylus" | "finger"] />

<uses-configuration>是对键盘、触摸屏、方向控制等用户输入有关的硬件。

< uses-feature
   android:name="string"
   android:required=["true" | "false"]
   android:glEsVersion="integer" / >

对于不满足这些要求的终端,Google Play不会向他们显示你的应用。例如我们要求必须支持多点触摸,则<uses-feature android:name="android.hardware.touchscreen.multitouch" android:required="true" />。例如游戏中要求支持OpenGL ES的某个版本以上,可以设定<uses-feature android:glEsVersion="0x00020000" android:required="true"/>。需要注意这两个设定和权限要求没有任何关联。如果android:required="false",则表示可以没有,并非必须没有。

在代码中,我们也可以向包管理器询问是否具备相关能力,然后根据不同的情况分别进行处理。

boolean hasBluetooth = getPackageManager().hasSystemFeature(PackageManager.FEATURE_BLUETOOTH);

 

相关链接: 我的Android开发相关文章

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值