统计学习算法
文章平均质量分 92
比较传统的机器学习算法,如LR、XGB、SVM等
崔中江
这个作者很懒,什么都没留下…
展开
-
机器学习评价指标
分类模型评价指标简述原创 2023-11-06 00:26:06 · 133 阅读 · 0 评论 -
机器学习基础篇之逻辑回归模型
Logistic Regression(简称LR)虽然被称为回归,但其实是分类模型,并常用于二分类。LR由于其简单、可并行化、可解释性强深受工业界喜爱,尤其是金融领域。LR模型的本质是:假设数据集服从这个分布,然后用极大似然估计做参数的估计。原创 2023-10-15 19:32:18 · 228 阅读 · 0 评论 -
决策树
决策树是一种基本的分类和回归方法,本文主要讨论用于分类的决策树,在分类问题中,表示基于特征对实例进行分类的过程。决策树可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布,学习时,利用训练数据,根据损失函数最小化原则建立决策树,决策树学习主要包括3个步骤:特征选择,决策树的生成和决策树的修剪。1.特征选择特征选择在于选取对训练数据具有分类能力的特征,这样可以提高决策原创 2016-07-15 10:55:49 · 862 阅读 · 0 评论 -
支持向量机
支持向量机是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使他有别于感知机;支持向量机还包括核技巧,这使他成为实质上的非线性分类器。支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。支持向量机的学习算法是求解凸二次规划的最优化问题。支持向量机学习方法包括构建由简至繁的模型:线性可分支持向量机,线性支持向量原创 2016-07-17 21:34:14 · 954 阅读 · 0 评论 -
朴树贝叶斯法
朴树贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型。对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。原创 2016-07-20 18:18:31 · 2223 阅读 · 0 评论