You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains nintegers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.
The last test case is followed by a line containing a single 0.
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0Sample Output
1 4 3
// RMQ在线查询
#include <cstdio>
#include <algorithm>
#include <cmath>
#define MAX 100010
using namespace std;
int maxsum[MAX][20];
int f[MAX];
int a[MAX];
int n, q;
void RMQ( int n ) { //预处理->O(nlogn)
for( int i = 1; i <= n; i++ ) {
maxsum[i][0] = f[i];
}
for( int j = 1; j < 20; ++j )
for( int i = 1; i <= n; ++i )
if( i + (1 << j) - 1 <= n ) {
maxsum[i][j] = max( maxsum[i][j - 1], maxsum[i + (1 << (j - 1))][j - 1] );
}
}
int query( int left, int right ) {
if( left > right ) return 0;
int k = (int)(log( right - left + 1.0 ) / log( 2.0 ));
int maxres = max( maxsum[left][k], maxsum[right - ( 1 << k ) + 1][k] );
return maxres;
}
int main() {
while( scanf( "%d", &n ) ) {
memset( a, 0, sizeof( a ) );
memset( f, 0, sizeof( f ) );
memset( maxsum, 0, sizeof( maxsum ) );
if( n == 0 ) break;
scanf( "%d", &q );
for( int i = 1; i <= n; i++ ) {
scanf( "%d", &a[i] );
if( i == 1 ) f[1] = 1;
else if( a[i] == a[i - 1] ) f[i] = f[i - 1] + 1;
else f[i] = 1;
}
RMQ( n );
while( q-- ) {
int left, right;
scanf( "%d%d", &left, &right );
// 先寻找前半段满足连续相等值的位置,因为前半段可能会产生影响
int t = left;
while( t <= right && a[t] == a[t - 1] ) t++;
int ans = query( t, right ); // 计算后半段
ans = max( ans, t - left ); // 选两者最大值
printf( "%d\n", ans );
}
}
return 0;
}