tf.argmax(vector, 1)

tf.argmax(vector, 1):返回的是vector中的最大值的索引号,如果vector是一个向量,那就返回一个值,如果是一个矩阵,那就返回一个向量,这个向量的每一个维度都是相对应矩阵行的最大值元素的索引号。

import tensorflow as tf
A = tf.constant([[1,2,3,4,5]])
B = tf.constant([[1,2,3],[6,5,4]])
with tf.Session() as sess:
    print(sess.run(tf.argmax(A,1)))
    print(sess.run(tf.argmax(B,1)))

输出
[4]
[2 0]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
TensorFlow 2.0 中,`tf.nn.rnn_cell` 模块已经被移除了,因此 `tf.nn.rnn_cell.seq2seq` 也不再可用。相反,您可以使用 `tf.keras.layers` 中的相应函数来构建您的模型。下面是一个使用 `tf.keras` 实现 seq2seq 模型的示例: ``` python import tensorflow as tf # 定义编码器 class Encoder(tf.keras.Model): def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz): super(Encoder, self).__init__() self.batch_sz = batch_sz self.enc_units = enc_units self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim) self.gru = tf.keras.layers.GRU(self.enc_units, return_sequences=True, return_state=True, recurrent_initializer='glorot_uniform') def call(self, x, hidden): x = self.embedding(x) output, state = self.gru(x, initial_state = hidden) return output, state def initialize_hidden_state(self): return tf.zeros((self.batch_sz, self.enc_units)) # 定义注意力层 class BahdanauAttention(tf.keras.layers.Layer): def __init__(self, units): super(BahdanauAttention, self).__init__() self.W1 = tf.keras.layers.Dense(units) self.W2 = tf.keras.layers.Dense(units) self.V = tf.keras.layers.Dense(1) def call(self, query, values): # query: 上一时间步的隐藏状态,shape=(batch_size, hidden_size) # values: 编码器的输出,shape=(batch_size, max_length, hidden_size) hidden_with_time_axis = tf.expand_dims(query, 1) score = self.V(tf.nn.tanh( self.W1(values) + self.W2(hidden_with_time_axis))) # attention_weights shape == (batch_size, max_length, 1) attention_weights = tf.nn.softmax(score, axis=1) # context_vector shape after sum == (batch_size, hidden_size) context_vector = attention_weights * values context_vector = tf.reduce_sum(context_vector, axis=1) return context_vector, attention_weights # 定义解码器 class Decoder(tf.keras.Model): def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz): super(Decoder, self).__init__() self.batch_sz = batch_sz self.dec_units = dec_units self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim) self.gru = tf.keras.layers.GRU(self.dec_units, return_sequences=True, return_state=True, recurrent_initializer='glorot_uniform') self.fc = tf.keras.layers.Dense(vocab_size) # 用于注意力 self.attention = BahdanauAttention(self.dec_units) def call(self, x, hidden, enc_output): # enc_output shape == (batch_size, max_length, hidden_size) context_vector, attention_weights = self.attention(hidden, enc_output) # x shape after passing through embedding == (batch_size, 1, embedding_dim) x = self.embedding(x) # 将上一时间步的隐藏状态和注意力向量拼接起来作为输入传给 GRU x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1) # 将拼接后的向量传给 GRU output, state = self.gru(x) # output shape == (batch_size * 1, hidden_size) output = tf.reshape(output, (-1, output.shape[2])) # output shape == (batch_size, vocab) x = self.fc(output) return x, state, attention_weights # 定义损失函数和优化器 optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none') def loss_function(real, pred): mask = tf.math.logical_not(tf.math.equal(real, 0)) loss_ = loss_object(real, pred) mask = tf.cast(mask, dtype=loss_.dtype) loss_ *= mask return tf.reduce_mean(loss_) # 定义训练步骤 @tf.function def train_step(inp, targ, enc_hidden): loss = 0 with tf.GradientTape() as tape: enc_output, enc_hidden = encoder(inp, enc_hidden) dec_hidden = enc_hidden dec_input = tf.expand_dims([tokenizer.word_index['<start>']] * BATCH_SIZE, 1) # teacher forcing - 将目标词作为下一个输入传给解码器 for t in range(1, targ.shape[1]): # 将编码器的输出和上一时间步的隐藏状态传给解码器 predictions, dec_hidden, _ = decoder(dec_input, dec_hidden, enc_output) loss += loss_function(targ[:, t], predictions) # 使用 teacher forcing dec_input = tf.expand_dims(targ[:, t], 1) batch_loss = (loss / int(targ.shape[1])) variables = encoder.trainable_variables + decoder.trainable_variables gradients = tape.gradient(loss, variables) optimizer.apply_gradients(zip(gradients, variables)) return batch_loss # 定义预测函数 def evaluate(sentence): attention_plot = np.zeros((max_length_targ, max_length_inp)) sentence = preprocess_sentence(sentence) inputs = [tokenizer.word_index[i] for i in sentence.split(' ')] inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs], maxlen=max_length_inp, padding='post') inputs = tf.convert_to_tensor(inputs) result = '' hidden = [tf.zeros((1, units))] enc_out, enc_hidden = encoder(inputs, hidden) dec_hidden = enc_hidden dec_input = tf.expand_dims([tokenizer.word_index['<start>']], 0) for t in range(max_length_targ): predictions, dec_hidden, attention_weights = decoder(dec_input, dec_hidden, enc_out) # 存储注意力权重以便后面制图 attention_weights = tf.reshape(attention_weights, (-1, )) attention_plot[t] = attention_weights.numpy() predicted_id = tf.argmax(predictions[0]).numpy() result += tokenizer.index_word[predicted_id] + ' ' if tokenizer.index_word[predicted_id] == '<end>': return result, sentence, attention_plot # 将预测的 ID 作为下一个解码器输入的 ID dec_input = tf.expand_dims([predicted_id], 0) return result, sentence, attention_plot ``` 在上面的代码中,我们使用了 `tf.keras.layers` 中的 `Embedding`、`GRU` 和 `Dense` 层来构建编码器和解码器,使用 `tf.keras.optimizers.Adam` 作为优化器,使用 `tf.keras.losses.SparseCategoricalCrossentropy` 作为损失函数。同时,我们还定义了一个 `BahdanauAttention` 层来实现注意力机制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量子孤岛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值