背包九讲
- 01背包问题
- 完全背包问题
- 多重背包问题
- 混合背包问题
- 二维费用的背包问题
- 分组背包问题
- 背包问题方案数
- 求背包问题的方案
- 有依赖的背包问题
1. 01背包问题
给定n中物品和容量为C的背包,物品i的重量的wi,其价值为vi。
面对每个物品,我们只有选择拿与不拿,不能选择装入物体的一部分,也不能装入同一个物品多次。
决策:为了背包中物品总价值最大化,第 i件物品应该放入背包中吗 ?
状态转移方程
f[i][j]
表示前 i 件物品放入一个容量为 j 的背包获得的最大价值.
- j < w[i] ,此时背包容量不足以放下第i件物品,只能选择不拿——
f[i][j] = f[i-1][j]
- j >= w[i] ,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更大的价值。
- 若拿取,
f[i][j] = f[i - 1][j - w[i]] + v[i]
.这里的f[i - 1][ j - w[i]]
指的就是考虑了i-1件物品,背包容量为j-w[i]
时的最大价值。 - 若不拿——
f[i][j] = f[i-1][j]
- 若拿取,
例子
假设山洞里共有a,b,c,d ,e这5件宝物(不是5种宝物),它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包, 怎么装背包,可以才能带走最多的财富。
重点:明确这张表是至底向上,从左到右生成的.1~10代表承重,单元格则代表价值
name | weight | value | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | 2 | 6 | 0 | 6 | 6 | 9 | 9 | 12 | 12 | 15 | 15 | 15 |
b | 2 | 3 | 0 | 3 | 3 | 6 | 6 | 9 | 9 | 9 | 10 | 11 |
c | 6 | 5 | 0 | 0 | 0 | 6 | 6 | 6 | 6 | 6 | 10 | 11 |
d | 5 | 4 | 0 | 0 | 0 | 6 | 6 | 6 | 6 | 6 | 10 | 10 |
e | 4 | 6 | 0 | 0 | 0 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
版本1:利用二维数组
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1010;
// 全局变量定义在堆上,会初始化为0
int n, capacity;
int f[N][N];
int v[N], w[N]; // 记录一下每个物品的体积和价值
int main()
{
cin >> n >> capacity;
for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
for (int i = 1; i <= n; i++)
for (int j =1; j <= capacity; j++)
{
f[i][j] = f[i-1][j];
if (j >= v[i])
f[i][j] = max(f[i][j], f[i -1][j - v[i]] + w[i]);
}
int res = 0;
for (int i = 0; i <= capacity; i++) res = max(res, f[n][i]);
cout << res << endl;
return 0;
}
观察发现:f[i][v]
只和前一层有关,没有必要把所有层都记下来。
用滚动数组或者一维数组来优化
版本2:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1010;
// 全局变量定义在堆上,会初始化为0
int n, capacity;
int f[N];
int v[N], w[N]; // 记录一下每个物品的体积和价值
int main()
{
cin >> n >> capacity;
for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
for (int i = 1; i <= n; i++)
for (int j = capacity; j >= v[i]; j--) // 从大到小排列保证不包含第i个物品
f[j] = max(f[j], f[j - v[i]] + w[i]);
cout << f[capacity] << endl; // 和初始化有关
/*
f[0] = 0;
f[i] = -INF;
*/
return 0;
}
2. 完全背包问题
有 N 种物品和一个容量是 V的背包,每种物品都有无限件可用。
第 i 种物品的体积是 v[i],价值是 w[i]。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
/*
f[i] 表示 总体积是i的情况下最大价值是多少
result = max(f[0 ... m]) m代表容量
for (int i =1; i <= n; i++)
for (int j = v[i]; j <= m; j--) // 从小到大枚举保证能取到重复的
f[j] = max(f[j], f[j - v[i]] + w[i]);
*/
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1010;
int f[N];
int v[N], w[N];
int main()
{
int n, capacity;
cin >> n >> capacity;
for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
// 明确状态转换方程
for (int i = 1; i <= n; i++)
for (int j = v[i]; j <= capacity; j++)
f[j] = max(f[j], f[j - v[i]] + w[i]);
cout << f[capacity] << endl; // 表示前m个之和,因为全局初始化已经保证了所有f[i]都是0
// 如果题目为背包容积恰为capacity的最大价值为多少,只需把所有值初始化为-INF;
return 0;
}
3. 1 多重背包问题 I
此问题是01背包问题
的扩展
有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 s[i] 件,每件体积是 v[i],价值是 w[i]。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
数据范围
0<N,V≤1000<N,V≤100
0<vi,wi,si≤100
由数据范围可以用三重循环来做,最简单的写法
/*
f[i] = 总体积是i的情况下,最大价值是多少
for (int i = 0; i < n; i++)
{
for (int j = m; j >= v[i]; j--)
f[j] = max(f[j], f[j - v[i]] + w[i], f[j - 2*v[i]] + 2*w[i] ...);
}
1. f[i] = 0;
f[m]就是答案
2. f[0] = 0; f[i] = -INF, i != 0;
max(f[0...m]);
*/
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;
int f[N];
int v[N], w[N], s;
int main()
{
int n, m;
cin >> n >> m ;
for (int i = 1; i <= n; i++)
{
cin >> v[i] >> w[i] >> s;
for (int j = m; j >= v[i]; j--)
for (int k = 1; k <= s && k*v[i] <= j; k++ )
f[j] = max(f[j], f[j - k*v[i]] + k*w[i]);
}
cout << f[m] << endl;
return 0;
}
3.2 多重背包问题 II
题目同上。但是数据范围较大。
数据范围
0<N≤10000<N≤1000
0<V≤20000<V≤2000
0<vi, wi, si ≤ 2000
本题考查多重背包的二进制优化方法
考虑:如何把多重背包问题变成01背包问题
将s划分成log s 份,
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std;
const int N = 2010;
int n, m;
int f[N];
struct Good
{
int v, w;
};
int main()
{
vector<Good> goods;
cin >> n >> m;
for (int i = 0; i < n; i++)
{
int v, w, s;
cin >> v >> w >> s;
// 把s拆成logS份
for (int k = 1; k <= s; k*=2)
{
s -= k;
goods.push_back({v * k, w * k});
}
if (s > 0) goods.push_back({v * s, w * s});
}
// 套用01背包的模板即可
for (auto good : goods)
for (int j = m; j >= good.v; j--)
f[j] = max(f[j], f[j - good.v] + good.w);
cout << f[m] << endl;
return 0;
}
3.3 多重背包问题 III
单调队列优化解法, LeetCode239题
using namespace std;
int item_number, packge_volumn;
int volume, value, number;
int dp[20010];
int dp_prev[20010];
int monotone_queue[20010];
int main() {
cin >> item_number >> packge_volumn;
for (int i = 0; i < item_number; ++i) {
memcpy(dp_prev, dp, sizeof(dp));
cin >> volume >> value >> number;
for (int j = 0; j < volume; ++j) {
int head = 0, tail = -1;
/*
数值越大,表示位置越后面
队首在队尾后面队列为空,即head > tail 时队列为空
monotone_volumn[]为单调队列
存储前个s(物品数量)中的最大值
数组从头(hh)到尾(tt)单调递减
*/
for (int k = j; k <= packge_volumn; k += volume) {
//k代表假设当前背包容量为k
//monotone_queue[head]为队首元素(最大值的下标)
//g[]为dp[i-1][]
//f[]为dp[i][]
/*
维护一个大小为k的区间使最大值为前k个元素中最大
(k - q[hh]) / v 表示拿取物品的数量(相当于最原始的多重背包dp的k)
*/
if (head <= tail && (k - monotone_queue[head]) / volume > number)
head++;
/*
若队内有值,该值就是前k个元素的最大值
(k - q[hh]) / v 表示拿取物品的数量(相当于最原始的多重背包dp的k)
q[hh]为队首元素(g[]中前k个数中最大值的下标),g[]为dp[i-1][]
所以 g[q[hh]]为只考虑前i-1个物品时,拿前q[hh]个物品的最大价值
*/
if (head <= tail)
dp[k] = max(dp[k], dp_prev[monotone_queue[head]] + (k - monotone_queue[head]) / volume * value);
/*
若队尾元素小于当前元素,则队尾元素出队;
若队内一个元素比当前元素小,则该元素一定不会被用到(单调队列思想)
g[q[hh]] + (k - q[hh]) / v * w
与
g[k] - (k - j) / v * w
分别表示队尾元素的值和当前元素的值
*/
while (head <= tail && dp_prev[monotone_queue[tail]] - (monotone_queue[tail] - j) / volume * value<= dp_prev[k] - (k - j) / volume * value) {
--tail;
}
//去除了比当前小的元素,保证队列里的元素都比当前元素大,入队
monotone_queue[++tail] = k;
}
}
}
cout << dp[packge_volumn] << endl;
}
4. 混合背包问题
有 N 种物品和一个容量是 V 的背包。
物品一共有三类:
- 第一类物品只能用1次(01背包);
- 第二类物品可以用无限次(完全背包);
- 第三类物品最多只能用 si 次(多重背包);
每种体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 ii 种物品的体积、价值和数量。
- si=−1 表示第 i种物品只能用1次;
- si=0 表示第 i 种物品可以用无限次;
- si>0 表示第 i 种物品可以使用 si 次;
输出格式
输出一个整数,表示最大价值。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std;
const int N = 1010;
int f[N];
struct Thing
{
int kind;
int v, w;
};
vector <Thing> things;
int main()
{
int n, m;
cin >> n >> m;
for (int i = 0; i < n; i++)
{
int v, w, s;
cin >> v >> w >> s;
if (s < 0) things.push_back({-1, v, w});
else if (s == 0) things.push_back({0, v, w});
else
{
for (int k = 1; k <= s; k *= 2)
{
s -= k;
things.push_back({-1, v*k, w*k});
}
if (s > 0) things.push_back({-1, v*s, w*s});
}
}
for (auto thing : things)
{
if (thing.kind == 0)
{
for (int j = thing.v; j <= m; j++ ) f[j] = max(f[j], f[j - thing.v] + thing.w);
}
else
{
for (int j = m; j >= thing.v; j--) f[j] = max(f[j], f[j - thing.v] + thing.w);
}
}
cout << f[m] << endl;
return 0;
}
4. 二维背包问题
有 N 件物品和一个容量是 V 的背包,背包能承受的最大重量是 M。
每件物品只能用一次。体积是 vi,重量是 mi,价值是 wi。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,总重量不超过背包可承受的最大重量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,V,M,用空格隔开,分别表示物品件数、背包容积和背包可承受的最大重量。
接下来有 N 行,每行三个整数 vi,mi,wi,用空格隔开,分别表示第 i 件物品的体积、重量和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N≤1000
0<V,M≤100
0<vi,mi≤100
0<wi≤1000
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 110;
int f[N][N];
int nums, volumns, weights;
int main()
{
cin >> nums >> volumns >> weights;
for (int i = 0; i < nums; i++)
{
int volumn, weight, value;
cin >> volumn >> weight >> value;
for (int j = volumns; j >= volumn; j-- )
for (int k = weights; k >= weight; k--)
f[j][k] = max(f[j][k], f[j - volumn][k - weight] + value);
}
cout << f[volumns][weights] << endl;
return 0;
}
6. 分组背包问题
这里面多了一个背包组概念,且同一个背包组里面的物品之间是互斥的。
01背包问题的变种
有 N 组物品和一个容量是 V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i是组号,j是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。
接下来有 N 组数据:
- 每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
- 每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i个物品组的第 j个物品的体积和价值;
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤100
0<Si≤100
0<vij,wij≤100
输入样例
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例:
8
#include <iostream>