背包九讲总结

背包九讲

  1. 01背包问题
  2. 完全背包问题
  3. 多重背包问题
  4. 混合背包问题
  5. 二维费用的背包问题
  6. 分组背包问题
  7. 背包问题方案数
  8. 求背包问题的方案
  9. 有依赖的背包问题

1. 01背包问题

给定n中物品和容量为C的背包,物品i的重量的wi,其价值为vi

面对每个物品,我们只有选择拿与不拿,不能选择装入物体的一部分,也不能装入同一个物品多次。

决策:为了背包中物品总价值最大化,第 i件物品应该放入背包中吗 ?

状态转移方程

f[i][j] 表示前 i 件物品放入一个容量为 j 的背包获得的最大价值.

  1. j < w[i] ,此时背包容量不足以放下第i件物品,只能选择不拿——f[i][j] = f[i-1][j]
  2. j >= w[i] ,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更大的价值。
    • 若拿取,f[i][j] = f[i - 1][j - w[i]] + v[i].这里的f[i - 1][ j - w[i]]指的就是考虑了i-1件物品,背包容量为j-w[i]时的最大价值。
    • 若不拿——f[i][j] = f[i-1][j]

例子

假设山洞里共有a,b,c,d ,e这5件宝物(不是5种宝物),它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包, 怎么装背包,可以才能带走最多的财富。

重点:明确这张表是至底向上,从左到右生成的.1~10代表承重,单元格则代表价值

nameweightvalue12345678910
a26066991212151515
b23033669991011
c65000666661011
d54000666661010
e460006666666

版本1:利用二维数组

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010;
// 全局变量定义在堆上,会初始化为0
int n, capacity;
int f[N][N];
int v[N], w[N]; // 记录一下每个物品的体积和价值

int main()
{
    cin >> n >> capacity;
    for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    
    for (int i = 1; i <= n; i++)
        for (int j =1; j <= capacity; j++)
        {
            f[i][j] = f[i-1][j];
            if (j >= v[i])
                f[i][j] = max(f[i][j], f[i -1][j - v[i]] + w[i]);
        }    
    int res = 0;
    for (int i = 0; i <= capacity; i++) res = max(res, f[n][i]);
    
    cout << res << endl;
    return 0;
}

观察发现:f[i][v]只和前一层有关,没有必要把所有层都记下来。
用滚动数组或者一维数组来优化

版本2:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 1010;
// 全局变量定义在堆上,会初始化为0
int n, capacity;
int f[N];
int v[N], w[N]; // 记录一下每个物品的体积和价值

int main()

{
       cin >> n >> capacity;
       for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];


       for (int i = 1; i <= n; i++)
             for (int j = capacity; j >= v[i]; j--) // 从大到小排列保证不包含第i个物品
                    f[j] = max(f[j], f[j - v[i]] + w[i]);

       cout << f[capacity] << endl;  // 和初始化有关
       /*
       f[0] = 0;
       f[i] = -INF;    
       */
       return 0;

}

2. 完全背包问题

有 N 种物品和一个容量是 V的背包,每种物品都有无限件可用

第 i 种物品的体积是 v[i],价值是 w[i]。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

/*
f[i] 表示  总体积是i的情况下最大价值是多少
result = max(f[0 ... m]) m代表容量

for (int i =1; i <= n; i++)
	for (int j = v[i]; j <= m; j--)  // 从小到大枚举保证能取到重复的
		f[j] = max(f[j], f[j - v[i]] + w[i]);
*/
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 1010;

int f[N];
int v[N], w[N];

int main()
{
    int n, capacity;
    cin >> n >> capacity;
    for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    
    // 明确状态转换方程
    for (int i = 1; i <= n; i++)
        for (int j = v[i]; j <= capacity; j++)
            f[j] = max(f[j], f[j - v[i]] + w[i]);
            
    cout << f[capacity] << endl; // 表示前m个之和,因为全局初始化已经保证了所有f[i]都是0
    // 如果题目为背包容积恰为capacity的最大价值为多少,只需把所有值初始化为-INF;
    return 0;
            
}

3. 1 多重背包问题 I

此问题是01背包问题的扩展

有 N 种物品和一个容量是 V 的背包。

第 i 种物品最多有 s[i] 件,每件体积是 v[i],价值是 w[i]。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

数据范围

0<N,V≤1000<N,V≤100
0<vi,wi,si≤100

由数据范围可以用三重循环来做,最简单的写法

/*
f[i] = 总体积是i的情况下,最大价值是多少

for (int i = 0; i < n; i++)
{
	for (int j = m; j >= v[i]; j--)
		f[j] = max(f[j], f[j - v[i]] + w[i], f[j - 2*v[i]] + 2*w[i] ...);
}

1. f[i] = 0;
f[m]就是答案

2. f[0] = 0;  f[i] = -INF, i != 0;
max(f[0...m]);
*/

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 110;
int f[N];
int v[N], w[N], s;

int main()
{
    int n, m;
    cin >> n >> m ;
    
    for (int i = 1; i <= n; i++)
    {
        cin >> v[i] >> w[i] >> s;
        for (int j = m; j >= v[i]; j--)
            for (int k = 1; k <= s && k*v[i] <= j; k++ )
                f[j] = max(f[j], f[j - k*v[i]] + k*w[i]);
    }
    cout << f[m] << endl;
    return 0;
}

3.2 多重背包问题 II

题目同上。但是数据范围较大。

数据范围

0<N≤10000<N≤1000
0<V≤20000<V≤2000
0<vi, wi, si ≤ 2000

本题考查多重背包的二进制优化方法

考虑:如何把多重背包问题变成01背包问题

将s划分成log s 份,

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>

using namespace std;

const int N = 2010;

int n, m;
int f[N];

struct Good
{
    int v, w;
};

int main()
{
    vector<Good> goods;
    cin >> n >> m;
    
    for (int i = 0; i < n; i++)
    {
        int v, w, s;
        cin >> v >> w >> s;
        // 把s拆成logS份
        for (int k = 1; k <= s; k*=2)
        {
            s -= k;
            goods.push_back({v * k, w * k});
        }
        if (s > 0) goods.push_back({v * s, w * s});
    }
    
    // 套用01背包的模板即可
    for (auto good : goods)
        for (int j = m; j >= good.v; j--)
            f[j] = max(f[j], f[j - good.v] + good.w);
            
            
    cout << f[m] << endl;
    return 0;
}


3.3 多重背包问题 III

单调队列优化解法, LeetCode239题

using namespace std;

int item_number, packge_volumn;
int volume, value, number;

int dp[20010];
int dp_prev[20010];
int monotone_queue[20010];

int main() {
    cin >> item_number >> packge_volumn;
    for (int i = 0; i < item_number; ++i) {
        memcpy(dp_prev, dp, sizeof(dp));
        cin >> volume >> value >> number;
        for (int j = 0; j < volume; ++j) {
            int head = 0, tail = -1;
           /*
            数值越大,表示位置越后面
            队首在队尾后面队列为空,即head > tail 时队列为空
          
             monotone_volumn[]为单调队列
            存储前个s(物品数量)中的最大值
            数组从头(hh)到尾(tt)单调递减
            */
            for (int k = j; k <= packge_volumn; k += volume) {
                 //k代表假设当前背包容量为k
                //monotone_queue[head]为队首元素(最大值的下标)
                //g[]为dp[i-1][]
                //f[]为dp[i][]

                /*
                维护一个大小为k的区间使最大值为前k个元素中最大
                (k - q[hh]) / v 表示拿取物品的数量(相当于最原始的多重背包dp的k)
                */
                if (head <= tail && (k - monotone_queue[head]) / volume > number)
                    head++;
               /*
                若队内有值,该值就是前k个元素的最大值
                (k - q[hh]) / v 表示拿取物品的数量(相当于最原始的多重背包dp的k)
                q[hh]为队首元素(g[]中前k个数中最大值的下标),g[]为dp[i-1][]
                所以 g[q[hh]]为只考虑前i-1个物品时,拿前q[hh]个物品的最大价值
                */
                if (head <= tail)
                    dp[k] = max(dp[k], dp_prev[monotone_queue[head]] + (k - monotone_queue[head]) / volume * value);
 				
                /*
                若队尾元素小于当前元素,则队尾元素出队;
                若队内一个元素比当前元素小,则该元素一定不会被用到(单调队列思想)
                g[q[hh]] + (k - q[hh]) / v * w 
                与
                g[k] - (k - j) / v * w
                分别表示队尾元素的值和当前元素的值
                */
                while (head <= tail && dp_prev[monotone_queue[tail]] - (monotone_queue[tail] - j) / volume * value<= dp_prev[k] - (k - j) / volume * value) {
                    --tail;
                }
//去除了比当前小的元素,保证队列里的元素都比当前元素大,入队
                monotone_queue[++tail] = k;
            }
        }
    }
    cout << dp[packge_volumn] << endl;
}

4. 混合背包问题

有 N 种物品和一个容量是 V 的背包。

物品一共有三类:

  • 第一类物品只能用1次(01背包);
  • 第二类物品可以用无限次(完全背包);
  • 第三类物品最多只能用 si 次(多重背包);

每种体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 ii 种物品的体积、价值和数量。

  • si=−1 表示第 i种物品只能用1次;
  • si=0 表示第 i 种物品可以用无限次;
  • si>0 表示第 i 种物品可以使用 si 次;
输出格式

输出一个整数,表示最大价值。

#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>

using namespace std;
const int N = 1010;
int f[N];

struct Thing
{
    int kind;
    int v, w;
};
vector <Thing> things;

int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 0; i < n; i++)
    {
        int v, w, s;
        cin >> v >> w >> s;
        if (s < 0)  things.push_back({-1, v, w});
        else if (s == 0)  things.push_back({0, v, w});
        else
        {
            for (int k = 1; k <= s; k *= 2)
            {
                s -= k;
                things.push_back({-1, v*k, w*k});
            }
            if (s > 0) things.push_back({-1, v*s, w*s});
        }
    }
    
    for (auto thing : things)
    {
        if (thing.kind == 0)
        {
             for (int j = thing.v; j <= m; j++ )   f[j] = max(f[j], f[j - thing.v] + thing.w);
           
        }
        else 
        {
            for (int j = m; j >= thing.v; j--)  f[j] = max(f[j], f[j - thing.v] + thing.w);
        }
        
    }
    cout << f[m] << endl;
    return 0;
}

4. 二维背包问题

有 N 件物品和一个容量是 V 的背包,背包能承受的最大重量是 M。

每件物品只能用一次。体积是 vi,重量是 mi,价值是 wi。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,总重量不超过背包可承受的最大重量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,V,M,用空格隔开,分别表示物品件数、背包容积和背包可承受的最大重量。

接下来有 N 行,每行三个整数 vi,mi,wi,用空格隔开,分别表示第 i 件物品的体积、重量和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N≤1000
0<V,M≤100
0<vi,mi≤100
0<wi≤1000

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;
int f[N][N];

int nums, volumns, weights;

int main()
{
    cin >> nums >> volumns >> weights;
    for (int i = 0; i < nums; i++)
    {
        int  volumn, weight, value;
        cin  >> volumn >> weight >> value;
            for (int j = volumns; j >= volumn; j-- )
                for (int k = weights; k >= weight; k--)
                f[j][k] = max(f[j][k], f[j - volumn][k - weight] + value);
    }
    cout << f[volumns][weights] << endl;
    return 0;
}

6. 分组背包问题

这里面多了一个背包组概念,且同一个背包组里面的物品之间是互斥的。01背包问题的变种

有 N 组物品和一个容量是 V 的背包。

每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i是组号,j是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。

接下来有 N 组数据:

  • 每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
  • 每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i个物品组的第 j个物品的体积和价值;
输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤100
0<Si≤100
0<vij,wij≤100

输入样例
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例:
8
#include <iostream>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量子孤岛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值