深度学习基础 - 概率的三个公理
flyfish
对于公理的内容 ,不敢有一丝一毫的更改。改公理,再建立另一套体系那都是大神级别的人物。
曾经“概率”的定义是不清晰的,拉普拉斯的古典概率有bug。1925年22岁的柯尔莫哥洛夫发表了概率论领域的第一篇论文,30岁时出版了《概率论基础》一书,将概率论建立在严格的公理基础上,从此概率论正式成为了一个严格的数学分支,要严谨就得有公理。
概率的三个公理如下
公理 1
0
≤
P
(
E
)
≤
1
0 \leq P(E) \leq 1
0≤P(E)≤1
公理 2
P
(
S
)
=
1
P(S) = 1
P(S)=1
公理 3 对任一列互不相容的事件
E
1
,
E
2
,
⋯
E_1, E_2, \cdots
E1,E2,⋯ (即如果
i
≠
j
i \neq j
i=j,则
E
i
E
j
=
∅
E_i E_j = \varnothing
EiEj=∅),有
P
(
⋃
i
=
1
∞
E
i
)
=
∑
i
=
1
∞
P
(
E
i
)
P(\bigcup_{i = 1}^{\infty} E_i) = \sum_{i = 1}^{\infty}P(E_i)
P(i=1⋃∞Ei)=i=1∑∞P(Ei)
我们把满足以上3条公理的
P
(
E
)
P(E)
P(E)称为事件E的概率。
解释
公理 1 说明任何事件 E 的概率在 0 到 1 之间,包含0与1,也就是闭区间
[
0
,
1
]
[0,1]
[0,1]。
公理 2 说明 S 作为必然发生的事件,其概率定义为 1。
公理 3 说明对任一列互不相容事件,至少有一事件发生的概率等于各事件发生的概率之和。
对于公理就得理解
样本空间(Sample Space),记为 S
样本空间的任意子集 E称为事件(Event)
不可能发生的事件称为不可能事件,记为
∅
\varnothing
∅。如果
E
F
=
∅
EF=\varnothing
EF=∅,则称 E 和 F 是互不相容的(Mutually Exclusive)。
概率
参考文献
《概率论基础教程》原书第9版 Sheldon M.Ross ,译者: 童行伟 梁宝生