关于圆的方程

关于圆的方程

flyfish

几何定义

圆是平面上所有到一个固定点(圆心)距离相等的点的集合。

解析几何描述

设圆心位于点 ( h , k ) (h, k) (h,k),半径为 r r r,那么对于圆上的任意一点 ( x , y ) (x, y) (x,y),它到圆心的距离总是等于 r r r。根据勾股定理,这个距离可以表示为: ( x − h ) 2 + ( y − k ) 2 = r \sqrt{(x - h)^2 + (y - k)^2} = r (xh)2+(yk)2 =r
平方两边,可以得到:
( x − h ) 2 + ( y − k ) 2 = r 2 (x - h)^2 + (y - k)^2 = r^2 (xh)2+(yk)2=r2这是圆的标准方程。如果圆心位于原点 ( 0 , 0 ) (0, 0) (0,0),方程简化为: x 2 + y 2 = r 2 x^2 + y^2 = r^2 x2+y2=r2

在这里插入图片描述
在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np

def plot_circle(h, k, r):
    theta = np.linspace(0, 2 * np.pi, 100)
    x = h + r * np.cos(theta)
    y = k + r * np.sin(theta)
    
    plt.figure(figsize=(6, 6))
    plt.plot(x, y, label=f'Circle: $(x - {h})^2 + (y - {k})^2 = {r}^2$')
    plt.scatter(h, k, color='red')  # 圆心
    plt.text(h, k, f'({h},{k})', fontsize=12, ha='right')
    plt.axhline(0, color='black',linewidth=0.5)
    plt.axvline(0, color='black',linewidth=0.5)
    plt.grid(color = 'gray', linestyle = '--', linewidth = 0.5)
    plt.gca().set_aspect('equal', adjustable='box')
    plt.legend()
    plt.title('Circle')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.show()

plot_circle(0, 0, 5)


def plot_pythagorean_theorem(a, b):
    c = np.sqrt(a**2 + b**2)
    plt.figure(figsize=(6, 6))
    
    # 绘制直角三角形
    plt.plot([0, a], [0, 0], 'bo-')  # 底边
    plt.plot([a, a], [0, b], 'bo-')  # 高
    plt.plot([0, a], [0, b], 'bo-')  # 斜边
    
    # 标注边长
    plt.text(a / 2, -0.5, f'{a}', fontsize=12, ha='center')
    plt.text(a + 0.5, b / 2, f'{b}', fontsize=12, va='center')
    plt.text(a / 2, b / 2, f'{c:.2f}', fontsize=12, ha='right', rotation=np.degrees(np.arctan(b / a)))
    
    plt.axhline(0, color='black',linewidth=0.5)
    plt.axvline(0, color='black',linewidth=0.5)
    plt.grid(color = 'gray', linestyle = '--', linewidth = 0.5)
    plt.gca().set_aspect('equal', adjustable='box')
    plt.title('Pythagorean Theorem')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.show()

plot_pythagorean_theorem(3, 4)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值