C++ 安全并发访问容器元素
2014-9-24 flyfish
标准库STL的vector, deque, list等等不是线程安全的
例如 线程1正在使用迭代器(iterator)读vector
线程2正在对该vector进行插入操作,使vector重新分配内存,这样就造成线程1中的迭代器失效
STL的容器
多个线程读是安全的,在读的过程中,不能对容器有任何写入操作
多个线程可以同时对不同的容器做写入操作。
不能指望任何STL实现来解决线程难题,必须手动做同步控制.
方案1 对vector进行加锁处理
如果需要实现工业强度,需要做更多的工作。
方案2 微软的Parallel Patterns Library (PPL)
看MSDN
PPL 提供的功能
1 Task Parallelism: a mechanism to execute several work items (tasks) in parallel
任务并行:一种并行执行若干工作项(任务)的机制
2 Parallel algorithms: generic algorithms that act on collections of data in parallel
并行算法:并行作用于数据集合的泛型算法
3 Parallel containers and objects: generic container types that provide safe concurrent access to their elements
并行容器和对象:提供对其元素的安全并发访问的泛型容器类型
示例是对斐波那契数列(Fibonacci)的顺序计算和并行计算的比较
顺序计算是
使用 STL std::for_each 算法
结果存储在 std::vector 对象中。
并行计算是
使用 PPL Concurrency::parallel_for_each 算法
结果存储在 Concurrency::concurrent_vector 对象中。
命名空间Concurrency首字母大写,一般命名空间全是小写。
贴一个简单的示例代码
使用parallel_for_each 算法计算std::array 对象中每个元素的平方
参数分别是lambda 函数、函数对象和函数指针。
在微软的concurrent_vector.h文件中有这样一句
Microsoft would like to acknowledge that this concurrency data structure implementation
is based on Intel implementation in its Threading Building Blocks ("Intel Material").
也就是微软的concurrent_vector是在Intel 的Threading Building Blocks基础上实现的。
方案3 Intel TBB(Threading Building Blocks)
Intel TBB 提供的功能
1 直接使用的线程安全容器,比如 concurrent_vector 和 concurrent_queue。
2 通用的并行算法,如 parallel_for 和 parallel_reduce。
3 模板类 atomic 中提供了无锁(Lock-free或者mutex-free)并发编程支持。
方案4 无锁数据结构支持库Concurrent Data Structures (libcds).
地址 http://sourceforge.net/projects/libcds/
下载以后里面直接有从VC2008到VC2013的编译环境,依赖于boost库
方案5 Boost 使用boost.lockfree
boost.lockfree实现了三种无锁数据结构:
1 boost::lockfree::queue
2 boost::lockfree::stack
3 boost::lockfree::spsc_queue
生产者-消费者
下面的代码实现的是
实现了一个多写生成,多消费 队列。
产生整数,并被4个线程消费
2014-9-24 flyfish
标准库STL的vector, deque, list等等不是线程安全的
例如 线程1正在使用迭代器(iterator)读vector
线程2正在对该vector进行插入操作,使vector重新分配内存,这样就造成线程1中的迭代器失效
STL的容器
多个线程读是安全的,在读的过程中,不能对容器有任何写入操作
多个线程可以同时对不同的容器做写入操作。
不能指望任何STL实现来解决线程难题,必须手动做同步控制.
方案1 对vector进行加锁处理
effective STL给出的Lock框架
template<typename Container> //一个为容器获取和释放互斥体的模板
class Lock
{ //框架;其中的很多细节被省略了
public:
Lock(const Container& container) :c(container)
{
getMutexFor(c);
//在构造函数中获取互斥体
}
~Lock()
{
releaseMutexFor(c);
//在析构函数中释放它
}
private: const Container& c;
};
如果需要实现工业强度,需要做更多的工作。
方案2 微软的Parallel Patterns Library (PPL)
看MSDN
PPL 提供的功能
1 Task Parallelism: a mechanism to execute several work items (tasks) in parallel
任务并行:一种并行执行若干工作项(任务)的机制
2 Parallel algorithms: generic algorithms that act on collections of data in parallel
并行算法:并行作用于数据集合的泛型算法
3 Parallel containers and objects: generic container types that provide safe concurrent access to their elements
并行容器和对象:提供对其元素的安全并发访问的泛型容器类型
示例是对斐波那契数列(Fibonacci)的顺序计算和并行计算的比较
顺序计算是
使用 STL std::for_each 算法
结果存储在 std::vector 对象中。
并行计算是
使用 PPL Concurrency::parallel_for_each 算法
结果存储在 Concurrency::concurrent_vector 对象中。
// parallel-fibonacci.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <concurrent_vector.h>
#include <array>
#include <vector>
#include <tuple>
#include <algorithm>
#include <iostream>
using namespace Concurrency;
using namespace std;
// Calls the provided work function and returns the number of milliseconds
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
__int64 begin = GetTickCount();
f();
return GetTickCount() - begin;
}
// Computes the nth Fibonacci number.
int fibonacci(int n)
{
if(n < 2)
return n;
return fibonacci(n-1) + fibonacci(n-2);
}
int wmain()
{
__int64 elapsed;
// An array of Fibonacci numbers to compute.
array<int, 4> a = { 24, 26, 41, 42 };
// The results of the serial computation.
vector<tuple<int,int>> results1;
// The results of the parallel computation.
concurrent_vector<tuple<int,int>> results2;
// Use the for_each algorithm to compute the results serially.
elapsed = time_call([&]
{
for_each (a.begin(), a.end(), [&](int n) {
results1.push_back(make_tuple(n, fibonacci(n)));
});
});
wcout << L"serial time: " << elapsed << L" ms" << endl;
// Use the parallel_for_each algorithm to perform the same task.
elapsed = time_call([&]
{
parallel_for_each (a.begin(), a.end(), [&](int n) {
results2.push_back(make_tuple(n, fibonacci(n)));
});
// Because parallel_for_each acts concurrently, the results do not
// have a pre-determined order. Sort the concurrent_vector object
// so that the results match the serial version.
sort(results2.begin(), results2.end());
});
wcout << L"parallel time: " << elapsed << L" ms" << endl << endl;
// Print the results.
for_each (results2.begin(), results2.end(), [](tuple<int,int>& pair) {
wcout << L"fib(" << get<0>(pair) << L"): " << get<1>(pair) << endl;
});
}
命名空间Concurrency首字母大写,一般命名空间全是小写。
贴一个简单的示例代码
使用parallel_for_each 算法计算std::array 对象中每个元素的平方
参数分别是lambda 函数、函数对象和函数指针。
#include "stdafx.h"
#include <ppl.h>
#include <array>
#include <iostream>
using namespace Concurrency;
using namespace std;
using namespace std::tr1;
// Function object (functor) class that computes the square of its input.
template<class Ty>
class SquareFunctor
{
public:
void operator()(Ty& n) const
{
n *= n;
}
};
// Function that computes the square of its input.
template<class Ty>
void square_function(Ty& n)
{
n *= n;
}
int _tmain(int argc, _TCHAR* argv[])
{
// Create an array object that contains 5 values.
array<int, 5> values = { 1, 2, 3, 4, 5 };
// Use a lambda function, a function object, and a function pointer to
// compute the square of each element of the array in parallel.
// Use a lambda function to square each element.
parallel_for_each(values.begin(), values.end(), [](int& n){n *= n;});
// Use a function object (functor) to square each element.
parallel_for_each(values.begin(), values.end(), SquareFunctor<int>());
// Use a function pointer to square each element.
parallel_for_each(values.begin(), values.end(), &square_function<int>);
// Print each element of the array to the console.
for_each(values.begin(), values.end(), [](int& n) {
wcout << n << endl;
});
return 0;
}
在微软的concurrent_vector.h文件中有这样一句
Microsoft would like to acknowledge that this concurrency data structure implementation
is based on Intel implementation in its Threading Building Blocks ("Intel Material").
也就是微软的concurrent_vector是在Intel 的Threading Building Blocks基础上实现的。
方案3 Intel TBB(Threading Building Blocks)
Intel TBB 提供的功能
1 直接使用的线程安全容器,比如 concurrent_vector 和 concurrent_queue。
2 通用的并行算法,如 parallel_for 和 parallel_reduce。
3 模板类 atomic 中提供了无锁(Lock-free或者mutex-free)并发编程支持。
方案4 无锁数据结构支持库Concurrent Data Structures (libcds).
地址 http://sourceforge.net/projects/libcds/
下载以后里面直接有从VC2008到VC2013的编译环境,依赖于boost库
方案5 Boost 使用boost.lockfree
boost.lockfree实现了三种无锁数据结构:
1 boost::lockfree::queue
2 boost::lockfree::stack
3 boost::lockfree::spsc_queue
生产者-消费者
下面的代码实现的是
实现了一个多写生成,多消费 队列。
产生整数,并被4个线程消费
#include <boost/thread/thread.hpp>
#include <boost/lockfree/queue.hpp>
#include <iostream>
#include <boost/atomic.hpp>
boost::atomic_int producer_count(0);
boost::atomic_int consumer_count(0);
boost::lockfree::queue<int> queue(128);
const int iterations = 10000000;
const int producer_thread_count = 4;
const int consumer_thread_count = 4;
void producer(void)
{
for (int i = 0; i != iterations; ++i) {
int value = ++producer_count;
while (!queue.push(value))
;
}
}
boost::atomic<bool> done (false);
void consumer(void)
{
int value;
while (!done) {
while (queue.pop(value))
++consumer_count;
}
while (queue.pop(value))
++consumer_count;
}
int main(int argc, char* argv[])
{
using namespace std;
cout << "boost::lockfree::queue is ";
if (!queue.is_lock_free())
cout << "not ";
cout << "lockfree" << endl;
boost::thread_group producer_threads, consumer_threads;
for (int i = 0; i != producer_thread_count; ++i)
producer_threads.create_thread(producer);
for (int i = 0; i != consumer_thread_count; ++i)
consumer_threads.create_thread(consumer);
producer_threads.join_all();
done = true;
consumer_threads.join_all();
cout << "produced " << producer_count << " objects." << endl;
cout << "consumed " << consumer_count << " objects." << endl;
}