深度学习04-RNN

1 为什么需要RNN

1.1RNN的应用场景

1 模仿论文(生成序列)。输入是一堆的论文文章,输出是符合论文格式的文本。
2 模仿linux 内核代码写程序(生成序列)
3 模仿小四写文章(生成文本序列)
Alt
4 机器翻译
5 image to text 看图说话
在这里插入图片描述

1.2 DNN和CNN不能解决的问题

在这里插入图片描述

深度神经网络DNN是上面这个样子。前一层输出是后一层输入。每一层的输入输出是独立的。第n层的输出和第n+1层的输出是独立的,是没有关系的。CNN也一样。例如一张图像中要画出猫和狗的位置,那猫和狗是独立的,是用不同的神经元捕获特征。不会去根据猫的位置或者特征推测狗的位置。

但有些任务中后续的输出和之前的内容是有关系的。例如完形填空:我是中国人,我的母语是_____。RNN就是用来解决这类问题。

2 RNN的网络结构

2.1 RNN基础结构

RNN网络结构的特点是每一层网络执行相同的任务,但是输出依赖于输入和记忆。
在这里插入图片描述

W,U,V是三个权重向量(是向量还是矩阵?),并且在所有网络层,值是相同的。
x t x_t xt是t时刻的输入
S t S_t St是t时刻的记忆: S t = f ( U X t + W S t − 1 ) S_t=f(UX_t+WS_{t-1}) St=f(UXt+WSt1),f可以是tanh等函数,这个函数应该是一个值域范围固定的函数,例如函数范围在(-1,1)之间。这样可以保证神经网络不会爆炸
O t O_t Ot是t时刻的输出,如果是输出下个词的话,那就是输出每个候选词的概率, O t = S o f t m a x ( V S t ) O_t=Softmax(VS_t) Ot=Softmax(VSt)

我们用高中学习的类比。如果t=高三,那么
W,U,V是我们的学习方法,高一,高二,高三这三年学习方法不变(在一轮迭代中)。
x t x_t xt是高三这一年老师教给我们的知识。
S t S_t St是高三学习完以后能够记住的知识。我们能记住的知识取决于高二学习后能记住的知识 S t − 1 S_{t-1} St1和高三这一年老师能交给我们的知识 x t x_t xt
O t O_t Ot可以是高三毕业考试的成绩,它与高三学习完以后能够记住的知识有关。当然成绩是一个线性回归问题,与上面例子中说的多分类问题是两种类型的问题。

由于每一层共享参数W、U、V,所以RNN的参数量与CNN相比,是比较小的。
在有些问题中不一定有 O t O_t Ot。例如情感分类的任务中,只需要在读完所有句子,也就是最后一个时刻输出情感类别即可,过程中不需要。
S t S_t St并不能捕捉所有时刻的信息, S t S_t St是一个矩阵,能够存储的信息是有限的。

示例代码:唐诗生成器

2.2 不同类型的RNN

1 深层双向RNN
在这里插入图片描述
在有些情况下,当前的输出不仅依赖于之前序列的元素,还与之后的元素有关。例如在句法解析中。“He said, Teddy bears are on sale” and “He said, Teddy Roosevelt was a great President。在上面的两句话中,当我们看到“Teddy”和前两个词“He said”的时候,我们有可能无法理解这个句子是指President还是Teddy bears。因此,为了解决这种歧义性,我们需要往后查找。

S ⃗ t = f ( W ⃗ x t + V ⃗ S ⃗ t − 1 + b ⃗ ) \vec S_t = f(\vec Wx_t+\vec V\vec S_{t-1}+\vec b) S t=f(W xt+V S t1+b )
S ← t = f ( W ← x t + V ← S ← t + 1 + b ← ) \overleftarrow{S}_{t}=f\left(\overleftarrow{W} x_{t}+\overleftarrow{V} \overleftarrow{S}_{t+1}+\overleftarrow{b}\right) S t=f(W xt+V S t+1+b )
y t = g ( U [ S ⃗ t ; S ← t ] + c ) y_{t}=g\left(U\left[\vec{S}_{t} ; \overleftarrow{S}_t\right]+c\right) yt=g(U[S t;S t]+c)

从左向右计算记忆 S ⃗ t \vec S_t S t,从右向左计算记忆 S ← t \overleftarrow{S}_t S t U [ S ⃗ t ; S ← t ] U\left[\vec{S}_{t} ; \overleftarrow{S}_t\right] U[S t;S t]是对两个矩阵做拼接。

2 深层双向RNN
在这里插入图片描述
图中的h和之前的S是等价的。
这样的网络是说在每个时刻不仅学习一遍,可以学习3遍甚至更多。类比于,你读了三遍高一,三遍高二,三遍高三。

3 RNN的优化算法BPTT

BPTT和BP很类似,是一个思路,但是因为这里和时刻有关系。
在这里插入图片描述
在这样一个多分类器中,损失函数是一个交叉熵。
某一时刻的损失函数是: E t ( y t , y ^ t ) = − y t log ⁡ y ^ t E_{t}\left(y_{t}, \hat{y}_{t}\right)=-y_{t} \log \hat{y}_{t} Et(yt,y^t)=ytlogy^t
最终的损失函数是所有时刻的交叉熵相加: E ( y , y ^ ) = ∑ t E t ( y t , y ^ t ) = − ∑ y t log ⁡ y ^ t \begin{aligned} E(y, \hat{y}) &=\sum_{t} E_{t}\left(y_{t}, \hat{y}_{t}\right) \\ &=-\sum y_{t} \log \hat{y}_{t} \end{aligned} E(y,y^)=tEt(yt,y^t)=ytlogy^t

损失函数对W求偏导: ∂ E ∂ W = ∑ t ∂ E t ∂ W \frac{\partial E}{\partial W}=\sum_{t} \frac{\partial E_{t}}{\partial W} WE=tWEt

假设t=3, ∂ E 3 ∂ W = ∂ E 3 ∂ y ^ 3 ∂ y ^ 3 ∂ s 3 ∂ s 3 ∂ W \frac{\partial E_{3}}{\partial W}=\frac{\partial E_{3}}{\partial \hat{y}_{3}} \frac{\partial \hat{y}_{3}}{\partial s_{3}} \frac{\partial s_{3}}{\partial W} WE3=y^3E3s3y^3Ws3
E 3 E_3 E3 y 3 y_3 y3有关系, y 3 y_3 y3 s 3 s_3 s3有关系(参考2.1中的公式)。
s 3 = t a n h ( U x 3 + W s 2 ) s_3=tanh(Ux_3+Ws_2) s3=tanh(Ux3+Ws2) s 3 s_3 s3 s 2 s_2 s2有关系,我们对 s 3 s_3 s3对W求偏导不能直接等于 s 2 s_2 s2,因为 s 2 s_2 s2也和W有关系。
s 2 = t a n h ( U x 2 + W s 1 ) s_2=tanh(Ux_2+Ws_1) s2=tanh(Ux2+Ws1)

s 2 s_2 s2 s 1 s_1 s1有关系…一直到0时刻。所以我们会把每个时刻的相关梯度值相加: ∂ s 3 ∂ W = ∑ k = 0 3 ∂ s 3 ∂ s k ∂ s k ∂ W \frac{\partial s_{3}}{\partial W}=\sum_{k=0}^{3} \frac{\partial s_{3}}{\partial s_{k}} \frac{\partial s_{k}}{\partial W} Ws3=k=03sks3Wsk

至于这里为什么要把每个时刻的梯度相加可以参考文档,这里直接就是说相加。还有一些解释是:因为分子是向量,分母是矩阵,需要拆开来求导。或者根本上来讲是因为求导公式,我暂时没弄明白这一步。

其中我们在计算 ∂ s 3 ∂ s 2 \dfrac{\partial s_3}{\partial s_2} s2s3的时候需要使用链式法则计算: ∂ s 3 ∂ s 1 = ∂ s 3 ∂ s 2 ∂ s 2 ∂ s 1 ∂ s 1 ∂ s 0 \dfrac{\partial s_3}{\partial s_1}=\dfrac{\partial s_3}{\partial s_2}\dfrac{\partial s_2}{\partial s_1}\dfrac{\partial s_1}{\partial s_0} s1s3=s2s3s1s2s0s1

所以最终得到: ∂ E 3 ∂ W = ∑ k = 0 3 ∂ E 3 ∂ y ^ 3 ∂ y ^ 3 ∂ s 3 ∂ s 3 ∂ s k ∂ s k ∂ W = ∑ k = 0 3 ∂ E 3 ∂ y ^ 3 ∂ y ^ 3 ∂ s 3 ( ∏ j = k + 1 3 ∂ s j ∂ s j − 1 ) ∂ s k ∂ W \frac{\partial E_{3}}{\partial W}=\sum_{k=0}^{3} \frac{\partial E_{3}}{\partial \hat{y}_{3}} \frac{\partial \hat{y}_{3}}{\partial s_{3}} \frac{\partial s_{3}}{\partial s_{k}} \frac{\partial s_{k}}{\partial W} =\sum_{k=0}^{3} \frac{\partial E_{3}}{\partial \hat{y}_{3}} \frac{\partial \hat{y}_{3}}{\partial s_{3}}\left(\prod_{j=k+1}^{3} \frac{\partial s_{j}}{\partial s_{j-1}}\right) \frac{\partial s_{k}}{\partial W} WE3=k=03y^3E3s3y^3sks3Wsk=k=03y^3E3s3y^3j=k+13sj1sjWsk

看公式中有连乘的部分。当使用tanh作为激活函数的时候,由于导数值分别在0到1之间,随着时间的累计,小于1的数不断相城,很容易趋近于0。(另外一种解释:如果权重矩阵 W的范数也不很大,那么经过 𝑡−𝑘 次传播后, ∂ s 3 ∂ s k \dfrac{\partial s_3}{\partial s_k} sks3的范数会趋近于0,这也就导致了梯度消失。)

梯度消失带来的一个问题就是记忆力有限,离得越远的东西记住得越少。

4 LSTM

LSTM就是为了解决普通RNN中的梯度消失问题提出的。
LSTM提出了记忆细胞C,以及各种门。下图中的h与上面的S是相同含义,表示记忆。每个时刻的输出,在这里是没有画出来的。
假设现在有一个任务是根据已经读到的词,预测下一个词。例如输入法,生成诗词。

在这里插入图片描述

第1步:忘记门:从记忆细胞中丢弃一些信息
在这里插入图片描述

使用sigmoid函数,经过sigmoid之后得到一个概率值,描述每个部分有多少量可以通过。
f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_{t}=\sigma\left(W_{f} \cdot\left[h_{t-1}, x_{t}\right]+b_{f}\right) ft=σ(Wf[ht1,xt]+bf)

如果C中包含当前对象的性别属性,现在已经正确的预测了当前的名词。当我们看到另外一个新的对象的时候,我们希望忘记旧对象的性别属性。

第2步:更新什么新信息到记忆中
在这里插入图片描述

sigmoid决定什么值需要更新: i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_{t}=\sigma\left(W_{i} \cdot\left[h_{t-1}, x_{t}\right]+b_{i}\right) it=σ(Wi[ht1,xt]+bi)
tanh层创建一个新的候选值向量(高三这一年学到的所有知识): C ~ t = tanh ⁡ ( W C ⋅ [ h t − 1 , x t ] + b C ) \tilde{C}_{t}=\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right) C~t=tanh(WC[ht1,xt]+bC)

第3步:更新记忆细胞
在这里插入图片描述

把旧状态与 f t f_t ft相乘,丢弃掉我们确定需要丢弃的信息;
加上 i t i_t it* C ~ t \tilde{C}_{t} C~t,就是新的候选值,更新状态。
C t = f t ∗ C t − 1 + i t ∗ C ~ t C_{t}=f_{t} * C_{t-1}+i_{t} * \tilde{C}_{t} Ct=ftCt1+itC~t
C t − 1 C_{t-1} Ct1是到高二以及之前的所有记忆, C ~ t \tilde{C}_{t} C~t高三这一年学到的所有知识。带着两部分应该留下的内容去高考。

在任务中就是希望把新看到对象的性别属性添加到C,而把旧对象的性别属性删除。

第4步,基于细胞状态得到输出
在这里插入图片描述

首先一个sigmoid层确定细胞状态的哪个部分的值将输出: o t = σ ( W o [ h t − 1 , x t ] + b o ) o_{t}=\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) ot=σ(Wo[ht1,xt]+bo)

接着用tanh处理细胞状态,输出我们确定输出的那部分,这部分是记忆用于下一时刻帮助做出决策的: h t = o t ∗ tanh ⁡ ( C t ) h_{t}=o_{t} * \tanh \left(C_{t}\right) ht=ottanh(Ct)

在语言模型中,既然我当前看到了一个对象,这里可能输出一个动词信息,以备下一步需要用到。例如这里可能输出当前对象是单数还是复数,这样就知道下一个动词应该填写什么形式。

总结:
在这里插入图片描述

1:决定老细胞只留下哪部分 f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_{t}=\sigma\left(W_{f} \cdot\left[h_{t-1}, x_{t}\right]+b_{f}\right) ft=σ(Wf[ht1,xt]+bf)
2: 决定新知识应该记住哪部分: i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_{t}=\sigma\left(W_{i} \cdot\left[h_{t-1}, x_{t}\right]+b_{i}\right) it=σ(Wi[ht1,xt]+bi)
新学习到的知识: C ~ t = tanh ⁡ ( W C ⋅ [ h t − 1 , x t ] + b C ) \tilde{C}_{t}=\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right) C~t=tanh(WC[ht1,xt]+bC)
3 更新细胞状态: C t = f t ∗ C t − 1 + i t ∗ C ~ t C_{t}=f_{t} * C_{t-1}+i_{t} * \tilde{C}_{t} Ct=ftCt1+itC~t
4 决定要输出哪部分: o t = σ ( W o [ h t − 1 , x t ] + b o ) o_{t}=\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) ot=σ(Wo[ht1,xt]+bo)
产生隐藏状态的输出: h t = o t ∗ tanh ⁡ ( C t ) h_{t}=o_{t} * \tanh \left(C_{t}\right) ht=ottanh(Ct)

对比普通的RNN,输出 o t = σ ( V S t ) o_t=\sigma\left(VS_t\right) ot=σ(VSt), S t = t a n h ( U x t + W S t − 1 ) S_t=tanh(Ux_t+WS_{t-1}) St=tanh(Uxt+WSt1),对于记忆 S t S_t St是由之前记忆和新知识共同组成。加入细胞状态可以选择忘记一部分老知识和选择忘记一部分新知识。

在之前的求导过程中 ∂ s 3 ∂ s 1 = ∂ s 3 ∂ s 2 ∂ s 2 ∂ s 1 ∂ s 1 ∂ s 0 \dfrac{\partial s_3}{\partial s_1}=\dfrac{\partial s_3}{\partial s_2}\dfrac{\partial s_2}{\partial s_1}\dfrac{\partial s_1}{\partial s_0} s1s3=s2s3s1s2s0s1,现在变为。。。。。

输出 o t = σ ( V h t ) o_t=\sigma\left(Vh_t\right) ot=σ(Vht)
h t = o t ∗ tanh ⁡ ( C t ) h_{t}=o_{t} * \tanh \left(C_{t}\right) ht=ottanh(Ct)
C t = f t ∗ C t − 1 + i t ∗ C ~ t = f t ∗ C t − 1 + i t ∗ tanh ⁡ ( W C ⋅ [ h t − 1 , x t ] + b C ) C_{t}=f_{t} * C_{t-1}+i_{t} * \tilde{C}_{t}=f_{t} * C_{t-1}+i_t*\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right) Ct=ftCt1+itC~t=ftCt1+ittanh(WC[ht1,xt]+bC)
损失函数不变,还是令t=3, ∂ E 3 ∂ W = ∂ E 3 ∂ y ^ 3 ∂ y ^ 3 ∂ h 3 ∂ h 3 ∂ C 3 ∂ C 3 ∂ W c \frac{\partial E_{3}}{\partial W}=\frac{\partial E_{3}}{\partial \hat{y}_{3}} \frac{\partial \hat{y}_{3}}{\partial h_{3}} \frac{\partial h_{3}}{\partial C_3}\frac{\partial C_{3}}{\partial W_c} WE3=y^3E3h3y^3C3h3WcC3

要求 ∂ C 3 ∂ W c \dfrac{\partial C_3}{\partial W_c} WcC3,这样 C t C_t Ct W c W_c Wc有关系, C t − 1 C_{t-1} Ct1 W c W_c Wc有关系,两部分相加,对整个函数求导,就是对这两部分分别求导,再相加。与普通RNN的相乘
∂ C 3 ∂ C 1 = ∂ C 3 ∂ C 2 + ∂ C 2 ∂ C 1 = ? \dfrac{\partial C_3}{\partial C_1}=\dfrac{\partial C_3}{\partial C_2}+\dfrac{\partial C_2}{\partial C_1}=? C1C3=C2C3+C1C2=?

5 GRU

GRU是LSTM的变种之一。
在这里插入图片描述

GRU做的改变是:
1 将忘记门和输入门合并成一个门,称为更新门。
2 细胞状态和隐藏状态,也就是上面的C和 h t h_t ht合并为一个 h t h_t ht
这样GRU的参数就比标准LSTM要少,在很多情况下效果基本一致。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值