概率论与数理统计
约定写代码
虽然8年前开始学习更好,但今天开始学习,总要好过明天再开始。
展开
-
随机变量的独立性
随机变量的独立性 从之前的随机事件的独立性推导出随机变量的独立性。 定义:设F(x,y)是二元随机变量(X,Y)的分布函数FX(x)F_X(x)是X的边际分布函数,FY(y)F_Y(y)是Y的边际分布函数。如果对所有的x,y都有,P(X≤x,Y≤y)=P(X≤x)P(Y≤y)P(X\leq x,Y\leq y)=P(X\leq x)P(Y\leq y),也就是F(x,y)=FX(x)FY(y转载 2017-04-08 10:17:59 · 13785 阅读 · 0 评论 -
第七章 假设检验(3)
关于样本量n的取值 如果希望在控制第I类错误的情况下,同时限制第II类错误的,这个时候就需要考虑样本量。样本量越大,错误概率越低。使用OC曲线。分布拟合检验 如果不知道总体服从什么类型的分布,就需要根据样本来检验干预分布的假设。单个分布的卡方拟合检验法 卡方拟合检验法可以检验总体是否具有某一个指定的分布或者属于某一分布族。具体参见第8章第6节。要求样本量n大于等于50。正态性检验方法 偏度、峰度检验原创 2017-06-11 17:42:50 · 993 阅读 · 0 评论 -
第六章 参数估计(续)
区间估计 问题:点估计估计的参数有多大概率是正确的?用区间估计来表示。置信区间 设总体X的分布函数F(x;θ)F(x;\theta),θ\theta未知,对给定值α(0<α<1)\alpha(0<\alpha<1),有两个统计量θ^L=θ^L(X1,X2,...Xn),θ^U=θ^U(X1,X2,...Xn)\hat \theta_L=\hat \theta_L(X_1,X_2,...X_n),\h原创 2017-06-03 18:53:28 · 967 阅读 · 0 评论 -
第六章 参数估计
依据样本推出总体分布的参数,方法有两种:矩估计和最大似然估计。 参数估计的形式有:点估计和区间估计。 点估计:构造合适的统计量θˆ=θˆ(X1,X2,...Xn)\widehat{\theta}=\widehat{\theta}(X_1,X_2,...X_n)用来估计未知参数θ\theta,θˆ\widehat{\theta}称为参数θ\theta的点估计量。 当给定样本观察值x1,x2原创 2017-05-20 16:32:24 · 1282 阅读 · 0 评论 -
第五章数理统计--样本和抽样分布
从今天开始要学习数理统计。 概率论:是专门研究随机现象的一门学科,定量描述随机现象及其规律。 数理统计:数理统计的研究对象是数据,包括对数据的采集、整理、分析、建模。主要任务是获取样本、描述样本,从样本得到总体的分布情况和分布参数。基本概念 总体:研究对象的全体。 个体:总体中的成员。 总体的容量:总体中包含的个体数。 有限总体:容量有限的总体。 无限总体:容量不可数的总体。有限原创 2017-05-20 15:28:49 · 6714 阅读 · 0 评论 -
第四章切比雪夫不等式、大数定理、中心极限定理
切比雪夫不等式 设随机变量X具有数学期望E(X)=μE(X)=\mu,方差D(X)=σ2D(X)=\sigma ^2,对于任意ε>0\varepsilon >0,都有P{|X−μ|≥ε}≤σ2ε2P\{|X-\mu| \ge \varepsilon\} \le \dfrac{\sigma ^2}{\varepsilon ^2} 方差越大,X落在区间外的概率越大,X的波动也就越大,与方差的意义统一转载 2017-05-04 22:51:16 · 31185 阅读 · 1 评论 -
第七章 假设检验
假设检验的目的是通过收集到的数据,来验证某个想要得到的结论。假设检验的步骤1 建立两个完全对立的假设 原假设H0H_0,备择假设H1H_1选择原假设的一些原则 1 错误拒绝假设A的后果更严重,则选择做原假设。 假设A:新药有某种毒副作用。 假设B:新药没有毒副作用。 如果把“有毒副作用”错认为“无毒副作用”后果更严重。如果把“没有毒副作用”错认为“有毒副作用”后果较轻。则选择A做原假设。原创 2017-06-09 19:06:37 · 3017 阅读 · 0 评论 -
概率论与数理统计
记录概率论与数理统计的笔记。课程是中国大学MOOC 浙江大学的《概率论与数理统计》课程。必然的、确定性的事件:1+1=2 ;水到100°开了…. 不确定的事件:XXX能活多少岁;硬币掉在地上哪面朝上;明天温度多少…. 称为随机现象。概率论 研究对象:随机现象 研究目的:随机现象的规律 概率论是数学的一个分支数理统计 研究对象:数据 研究目的:研究数据的规律,用于预测,转载 2017-03-12 17:19:52 · 782 阅读 · 0 评论 -
第七章 假设检验(2)
接上文。正态总体均值、方差的假设检验 单个正态总体均值的假设检验、方差的假设检验;成对数据均值的假设检验、两个正态总体方差比的检验。根据检验统计量的分布分别称为:z检验、t检验、卡方检验、F检验。 分布 原假设H0H_0 检验统计量 备择假设H1H_1 拒绝域 单正态(σ2\sigma^2已知) μ≤μ0\mu \le \mu_0 Z=X¯¯¯−μ0σ/(√n)Z=\d原创 2017-06-11 11:51:34 · 597 阅读 · 0 评论 -
二元随机变量
本章记录 1二元随机变量的定义 2二元离散型随机变量的定义、联合概率分布律、边际分布律、条件分布律 3二元离散型随机变量联合概率分布律函数、边际分布函数、条件分布函数 4二元连续型随机变量的定义、联合概率密度函数 二元随机变量 举例:研究入学儿童的发育情况。从一个样本(儿童)的身高、体重,两个维度研究。这用面向对象的编程角度理解类似于一个实体,有两个属性。 再个栗子转载 2017-04-02 07:07:25 · 10523 阅读 · 0 评论 -
第八章方差分析以及线性回归(2)
一元线性回归变量间的关系 变量与变量之间的关系分为确定性关系和相关性关系。 确定性关系是指当自变量给定一个值的时候,就能计算出应变量的值。例如物体下落高度h与下落时间t的关系:h=12gt2h=\dfrac{1}{2}gt^2。 相关性关系是指变量之间的关系不确定,表现为具有随机性的一种“趋势”。对自变量X的同一个值,取得的因变量Y的值可能不同,而且是随机的。但对应X在一定范围内的不同值,可原创 2017-06-28 19:16:51 · 956 阅读 · 0 评论 -
第一章 概率论的基本概念
概率论与数理统计的学习内容来源于中国大学MOOC,以及参考书籍《概率论与数理统计》第四版,浙江大学。 随机现象 在一定条件下,有可能出现多种结果;而且在事情发生前不能知道结果。 随机试验 概念:对随机现象的观察、记录、实验。 特征:1 在相同条件下可重复进行;2 事先知道所有可能的结果;3试验前不知道哪个结果会发生。样本空间 概念:所有可能结果的集合。一般用S表示。S={e}。转载 2017-03-12 17:33:08 · 5263 阅读 · 0 评论 -
第三章 随机变量的数字特征
数学期望 数学期望用来反映平均情况。定义 设离散型随机变量X的分布律为P(X=xk)=pk,k=1,2,3...P(X=x_k)=p_k,\;k=1,2,3...,若级数∑+∞k=1xkpk\sum_{k=1}^{+\infty} x_kp_k是收敛的,则称级数∑+∞k=1xkpk\sum_{k=1}^{+\infty} x_kp_k的值为随机变量X的数学期望。记为E(X)。E(X)=∑k=1+∞x转载 2017-04-22 07:25:16 · 5538 阅读 · 0 评论 -
二元随机变量函数的分布
在前面的文章记录了二元随机变量的定义、离散型二元随机变量的联合分布律/联合概率密度函数、边际分布律/边际概率密度函数、条件分布律/条件概率密度 ,以及对应的 联合分布函数、边际分布函数、条件分布函数。这篇文档介绍二元随机变量函数的分布。 二元随机变量函数的分布=二元随机变量函数的函数=g(X,Y)的分布。二元离散型随机变量函数的分布 设二元离散型随机变量(X,Y)具有概率分布律P(X=xi,Y转载 2017-04-14 16:38:58 · 8196 阅读 · 0 评论 -
第二章 随机变量
随机变量 目标:将实验结果数量化。实验结构有数字型和非数字型。数字型:降雨量、上车人数等。非数字型:晴天/阴天/下雨、化验结果阴性/阳性等。 定义:随机试验样本空间S,如果X=X(e)为定义在S上的实数单值函数,则称X(e)为随机变量。简写为X。 补充:随机变量X(e):S->R 的映射关系。随机变量实质是一个函数。 如果i≠ji\neq j,那么 {X=i}∩{X=j}转载 2017-03-25 09:07:26 · 5983 阅读 · 0 评论 -
第八章方差分析以及线性回归(1)
方差分析 方差分析是由英国统计学家Fisher在20世纪20年代提出的。 方差分析的目的是推断两个或者两个以上的总体均值是否有差异的显著性检验。单因素方差分析例子 保险公司为了了解某一险种在4个不同地区索赔额情况是否存在差异。收集了四个地区一年的索赔额记录。这四个地区的索赔额有无显著性差异。 概念 试验指标:研究对象的特征值。例如:索赔额。 因素:对试验指标产生影响的原因。例如:地原创 2017-06-28 04:36:20 · 1987 阅读 · 0 评论