131. Palindrome Partitioning

1 题目理解

输入:字符串s
规则:将字符串s分割,分割后每一个部分都是一个回文串。
输出:所有的分割方式

Example 1:

Input: s = “aab”
Output: [[“a”,“a”,“b”],[“aa”,“b”]]
Example 2:

Input: s = “a”
Output: [[“a”]]

2 回溯

例如s=‘aab’
处理第0个字符a:a是回文吗?是继续处理(第1个字符)
                        aa是回文吗?是,继续处理(第2个字符)
                        aab是回文吗?不是,跳过

处理第1个字符a:a是回文吗?是继续处理(第2个字符)
                        ab是回文吗?不是

一直到最后

class Solution {
    private List<List<String>> answer;
    private String s;
    public List<List<String>> partition(String s) {
        answer = new ArrayList<List<String>>();
        this.s = s;
        dfs(0,new ArrayList<String>());
        return answer;
    }
    
    private void dfs(int index,List<String> list){
        if(index>= s.length()){
            answer.add(new ArrayList<String>(list));
            return;
        }
        
        for(int i=index+1;i<=s.length();i++){
            String str = s.substring(index,i);
            if(isPalindrome(str)){
                list.add(str);
                dfs(i,list);
                list.remove(list.size()-1);
            }
        }
    }
    
    private boolean isPalindrome(String s){
        int i = 0,j = s.length()-1;
        while(i<j){
            if(s.charAt(i)!=s.charAt(j)) return false;
            i++;
            j--;
        }
        return true;
    }
}

时间复杂度 O ( n ∗ n ! ) O(n*n!) O(nn!),第一个字符有n种可能,第二个字符有n-1种可能,第三个字符n-2种可能,所以是n!。每次判断是否是回文,时间复杂度O(n)。所以总体时间复杂度 O ( n ∗ n ! ) O(n*n!) O(nn!)

3 动态规划

判断是否是回文,可以进一步优化,使用动态规划。这道题目第一次做是2020年5月。还记得当时看到解题答案惊呼原来动态规划初始化还能这么玩!
逻辑是这样的 s=“aab”。
boolean[][] dp,dp[i][j]=true表示下标从i到j的字符串是回文。
对于每个单个字符肯定是回文。所以所有的dp[i][i]=true。
接着处理相邻的,如果s.char(i)=s.charAt(i+1),那么dp[i][i+1]=true。
长度为1,为2的已经处理了。
在这些字符串的基础上左右扩展,如果左右扩展的字符相同,则说明是回文。

class Solution {
    private List<List<String>> answer;
    private String s;
    private boolean[][] dp;
    public List<List<String>> partition(String s) {
        answer = new ArrayList<List<String>>();
        this.s = s;
        int n = s.length();
        dp = new boolean[n][n];
        for(int i=0;i<n;i++){
            dp[i][i] = true;
        }
        for(int i=0;i<n-1;i++){
            if(s.charAt(i)==s.charAt(i+1)){
                dp[i][i+1]=true;
            }
        }
        for(int len = 3;len<=n;len++){
            for(int i=0;i<=n-len;i++){
                int j = len + i - 1;
                if(s.charAt(i) == s.charAt(j) && dp[i+1][j-1]){
                    dp[i][j] = true;
                }
            }
        }
        dfs(0,new ArrayList<String>());
        return answer;
    }
    
    private void dfs(int index,List<String> list){
        if(index>= s.length()){
            answer.add(new ArrayList<String>(list));
            return;
        }
        
        for(int i=index+1;i<=s.length();i++){
            String str = s.substring(index,i);
            if(dp[index][i-1]){
                list.add(str);
                dfs(i,list);
                list.remove(list.size()-1);
            }
        }
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值