1 题目理解
输入:字符串s
规则:将字符串s分割,分割后每一个部分都是一个回文串。
输出:所有的分割方式
Example 1:
Input: s = “aab”
Output: [[“a”,“a”,“b”],[“aa”,“b”]]
Example 2:
Input: s = “a”
Output: [[“a”]]
2 回溯
例如s=‘aab’
处理第0个字符a:a是回文吗?是继续处理(第1个字符)
aa是回文吗?是,继续处理(第2个字符)
aab是回文吗?不是,跳过
处理第1个字符a:a是回文吗?是继续处理(第2个字符)
ab是回文吗?不是
…
一直到最后
class Solution {
private List<List<String>> answer;
private String s;
public List<List<String>> partition(String s) {
answer = new ArrayList<List<String>>();
this.s = s;
dfs(0,new ArrayList<String>());
return answer;
}
private void dfs(int index,List<String> list){
if(index>= s.length()){
answer.add(new ArrayList<String>(list));
return;
}
for(int i=index+1;i<=s.length();i++){
String str = s.substring(index,i);
if(isPalindrome(str)){
list.add(str);
dfs(i,list);
list.remove(list.size()-1);
}
}
}
private boolean isPalindrome(String s){
int i = 0,j = s.length()-1;
while(i<j){
if(s.charAt(i)!=s.charAt(j)) return false;
i++;
j--;
}
return true;
}
}
时间复杂度 O ( n ∗ n ! ) O(n*n!) O(n∗n!),第一个字符有n种可能,第二个字符有n-1种可能,第三个字符n-2种可能,所以是n!。每次判断是否是回文,时间复杂度O(n)。所以总体时间复杂度 O ( n ∗ n ! ) O(n*n!) O(n∗n!)
3 动态规划
判断是否是回文,可以进一步优化,使用动态规划。这道题目第一次做是2020年5月。还记得当时看到解题答案惊呼原来动态规划初始化还能这么玩!
逻辑是这样的 s=“aab”。
boolean[][] dp,dp[i][j]=true表示下标从i到j的字符串是回文。
对于每个单个字符肯定是回文。所以所有的dp[i][i]=true。
接着处理相邻的,如果s.char(i)=s.charAt(i+1),那么dp[i][i+1]=true。
长度为1,为2的已经处理了。
在这些字符串的基础上左右扩展,如果左右扩展的字符相同,则说明是回文。
class Solution {
private List<List<String>> answer;
private String s;
private boolean[][] dp;
public List<List<String>> partition(String s) {
answer = new ArrayList<List<String>>();
this.s = s;
int n = s.length();
dp = new boolean[n][n];
for(int i=0;i<n;i++){
dp[i][i] = true;
}
for(int i=0;i<n-1;i++){
if(s.charAt(i)==s.charAt(i+1)){
dp[i][i+1]=true;
}
}
for(int len = 3;len<=n;len++){
for(int i=0;i<=n-len;i++){
int j = len + i - 1;
if(s.charAt(i) == s.charAt(j) && dp[i+1][j-1]){
dp[i][j] = true;
}
}
}
dfs(0,new ArrayList<String>());
return answer;
}
private void dfs(int index,List<String> list){
if(index>= s.length()){
answer.add(new ArrayList<String>(list));
return;
}
for(int i=index+1;i<=s.length();i++){
String str = s.substring(index,i);
if(dp[index][i-1]){
list.add(str);
dfs(i,list);
list.remove(list.size()-1);
}
}
}
}