动态规划总结

文章出处:极客时间《数据结构和算法之美》-作者:王争。该系列文章是本人的学习笔记。

动态规划的文章已经写了好几篇了。现在看下在实际开发中如何应用动态规划。也就是说前面几道题目可以解决哪些问题。

双11凑单问题,其实就是0-1背包问题。

莱文斯坦编辑距离和最长公共子串长度,可以用于解决输入搜索词的自动纠错功能。

四种算法的区别和联系。分治法与其他算法完全隔开,思路不同。分治法把一个问题分为多个子问题,利用子问题的答案求原问题的解。这几个子问题一定是不重复的。如果子问题重复,那就需要考虑回溯、贪心、动态规划。

回溯是基础,动态规划是对回溯的优化。回溯每一步都有选择,计算每一步(阶段)可以有多少种选择,每次选择一种进入下一个状态。最后得出最优解。

贪心的思路是当前状态下选择最好的。

动态规划是指计算当前状态是由哪些状态转变过来的,考虑在得到这些状态的最优解后怎么计算当前状态的最优解。最终得到目标状态。

贪心算法关注限制值和目标值。需要举一些例子来看看贪心是不是正确。
动态规划关注目标状态和目标值。

买书问题 dp实现 题目:买书 有一书店引进了一套书,共有3卷,每卷书定价是60元,书店为了搞促销,推出一个活动,活动如下: 如果单独购买其中一卷,那么可以打9.5折。 如果同时购买两卷不同的,那么可以打9折。 如果同时购买三卷不同的,那么可以打8.5折。 如果小明希望购买第1卷x本,第2卷y本,第3卷z本,那么至少需要多少钱呢?(x、y、z为三个已知整数)。 1、过程为一次一次的购买,每一次购买也许只买一本(这有三种方案),或者买两本(这也有三种方案), 或者三本一起买(这有一种方案),最后直到买完所有需要的书。 2、最后一步我必然会在7种购买方案中选择一种,因此我要在7种购买方案中选择一个最佳情况。 3、子问题是,我选择了某个方案后,如何使得购买剩余的书能用最少的钱?并且这个选择不会使得剩余的书为负数 。母问题和子问题都是给定三卷书的购买量,求最少需要用的钱,所以有"子问题重叠",问题中三个购买量设置为参数, 分别为i、j、k。 4、的确符合。 5、边界是一次购买就可以买完所有的书,处理方式请读者自己考虑。 6、每次选择最多有7种方案,并且不会同时实施其中多种,因此方案的选择互不影响,所以有"子问题独立"。 7、我可以用minMoney[i][j][k]来保存购买第1卷i本,第2卷j本,第3卷k本时所需的最少金钱。 8、共有x * y * z个问题,每个问题面对7种选择,时间为:O( x * y * z * 7) = O( x * y* z )。 9、用函数MinMoney(i,j,k)来表示购买第1卷i本,第2卷j本,第3卷k本时所需的最少金钱,那么有: MinMoney(i,j,k)=min(s1,s2,s3,s4,s5,s6,s7),其中s1,s2,s3,s4,s5,s6,s7分别为对应的7种方案使用的最少金钱: s1 = 60 * 0.95 + MinMoney(i-1,j,k) s2 = 60 * 0.95 + MinMoney(i,j-1,k) s3 = 60 * 0.95 + MinMoney(i,j,k-1) s4 = (60 + 60) * 0.9 + MinMoney(i-1,j-1,k) s5 = (60 + 60) * 0.9 + MinMoney(i-1,j,k-1) s6 = (60 + 60) * 0.9 + MinMoney(i-1,j,k-1) s7 = (60 + 60 + 60) * 0.85 + MinMoney(i-1,j-1,k-1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值