文本生成系列(二)Pointer Generator Network

最近项目中要用到copy机制,尝试了《文本生成系列(一)seq2seq中的copy机制》中的方法,发现处理OOV字符这一块处理起来不是很方便(可以实现),相对来说,Pointer Generator Network更简洁一些。
Pointer Generator Network的动机有两个:1. 处理OOV问题;2. 解决生成模型重复生成的问题。

1. Sequence-to-sequence attentional model

正常的soft attention
在这里插入图片描述
对应着公式看更香:
在这里插入图片描述

2. Pointer-generator network

在这里插入图片描述

主要区别在于多了一个生成模型的生成概率计算(sigmoid):
在这里插入图片描述

3. Coverage mechanism

c t c^t ct is the sum of attention distributions over all previous decoder timesteps:
在这里插入图片描述

4. 细节-OOV处理

在这里插入图片描述

5. pointer network & transformer

在这里插入图片描述
该方案我自己在类似于transformer的框架下试了下,效果还不错,在base很高的情况下还能有接近0.5个点的提升,是一个不错的改进策略。

参考:

pointer_summarizer
transformer-pointer-generator
Byte Cup 2018国际机器学习竞赛夺冠记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值