深度学习计算
文章平均质量分 71
cv_lhp
纸上得来终觉浅,绝知此事要躬行
展开
-
李沐动手学深度学习V2-层和块
1.自定义层:#自定义层:目前如果存在一个在深度学习框架中还不存在的层。 在这些情况下,你必须构建自定义层。import torchimport torch.nn.functional as Ffrom torch import nn#构造一个没有任何参数的自定义层class CenteredLayer(nn.Module): def __init__(self): super().__init__()#__init__()函数不进行任何初始化操作 def f原创 2022-04-25 00:38:09 · 408 阅读 · 0 评论 -
李沐动手学深度学习V2-GPU在Pytorch中使用
1.GPU在Pytorch中使用在PyTorch中,每个数组都有一个设备(device), 我们通常将其称为上下文(context)。 默认情况下,所有变量和相关的计算都分配给CPU。 有时上下文可能是GPU。 当我们跨多个服务器部署作业时,事情会变得更加棘手。 通过智能地将数组分配给上下文, 我们可以最大限度地减少在设备之间传输数据的时间。 例如,当在带有GPU的服务器上训练神经网络时, 我们通常希望模型的参数在GPU上。1.1使用nvidia-smi命令来查看显卡信息。! nvidia-smi #原创 2022-04-24 23:20:13 · 1451 阅读 · 0 评论 -
李沐动手学深度学习V2-模型加载和保存
1.模型保存和加载当运行一个耗时较长的训练过程时, 最佳的做法是定期保存中间结果, 以确保在服务器电源被不小心断掉时,我们不会损失几天的计算结果。 因此,模型保存和加载十分重要1.1 加载保存单个张量对于单个张量,我们可以直接调用load和save函数分别读写它们。 这两个函数都要求我们提供一个名称,save要求将要保存的变量作为输入。import torchfrom torch import nnfrom torch.nn import functional as Fx = torch.ar原创 2022-04-24 17:42:52 · 359 阅读 · 0 评论