之前有一篇文章,分析Hadoop日志限制(http://blog.csdn.net/bxyz1203/article/details/8107125)
文章仔细分析了MR中Java,Streaming,pipes三种Job方式对Log日志的限制情况
在实际使用中,我们发现用户自定义输入的log太多,userlog硬盘增大,导致磁盘过满,影响TaskTracker执行
由此我们用mapred.userlog.limit.kb限制了userlog的大小为10M,但这样同样可个问题,限制userlog大小后,这个10M
的大小将被加载至内存当,如果用户需求输出的日志过大,则会导致内存溢出的问题,但是做限制,会出现用户日志丢失
文章仔细分析了MR中Java,Streaming,pipes三种Job方式对Log日志的限制情况
在实际使用中,我们发现用户自定义输入的log太多,userlog硬盘增大,导致磁盘过满,影响TaskTracker执行
由此我们用mapred.userlog.limit.kb限制了userlog的大小为10M,但这样同样可个问题,限制userlog大小后,这个10M
的大小将被加载至内存当,如果用户需求输出的日志过大,则会导致内存溢出的问题,但是做限制,会出现用户日志丢失