协同过滤算法

本文介绍了协同过滤(Collaborative Filtering)的三种形式:基于用户的协同过滤(user-based)、基于物品的协同过滤(item-based)及基于模型的协同过滤(model-based)。此外还提到了推荐系统的实践步骤,包括选择合适的推荐算法、明确应用场景以及实现推荐算法的方法。
摘要由CSDN通过智能技术生成

3种形式的协同过滤(Collaborative Filtering)算法:

 

1、user-based:相同(相似)用户的喜好相同

2、item-based:能够引起使用者兴趣的项目,必定与其之前评分高的项目相似

3、model-based:先用历史资料得到一个模型,再用此模型进行预测

 

参考:http://gengrenjie.com/2009/04/12/%E5%8D%8F%E5%90%8C%E8%BF%87%E6%BB%A4%E6%89%AB%E7%9B%B2%E7%8F%AD%EF%BC%884%EF%BC%89/

 

http://www.daniel-lemire.com/fr/abstracts/SDM2005.html 这个地址是slope one算法的原文。

 

----------------------

 

个性化推荐学习步骤:

1、有哪些推荐算法?各个主流算法的应用场景是什么?

2、我们使用推荐系统的目的和场景是什么?

3、找一种最容易上手的算法,实现它(尽量利用已有资源:开源软件等)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值