洛谷 P2831 [NOIP2016 提高组] 愤怒的小鸟【状态压缩+动态规划】【胜似暴力却超过暴力的状压dp】

前言

上次了解一下状态压缩动态规划【状压dp】,感觉真的挺神奇的,简单易懂但是却有效,于是来做一下状压dp的经典题–>愤怒的小鸟
这题好难啊,虽然说已经知道了是使用状压dp,但是还是会被难到,题目很长,让我一直想要放弃。然后做了好久才做出来,我好笨菜狗

题目

愤怒的小鸟

题目背景

NOIP2016 提高组 D2T3

题目描述

Kiana 最近沉迷于一款神奇的游戏无法自拔。

简单来说,这款游戏是在一个平面上进行的。

有一架弹弓位于 ( 0 , 0 ) (0,0) (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 y = a x 2 + b x y=ax^2+bx y=ax2+bx 的曲线,其中 a , b a,b a,b 是 Kiana 指定的参数,且必须满足 a < 0 a < 0 a<0 a , b a,b a,b 都是实数。

当小鸟落回地面(即 x x x 轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有 n n n 只绿色的小猪,其中第 i i i 只小猪所在的坐标为 ( x i , y i ) \left(x_i,y_i \right) (xi,yi)

如果某只小鸟的飞行轨迹经过了 ( x i , y i ) \left( x_i, y_i \right) (xi,yi),那么第 i i i 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

如果一只小鸟的飞行轨迹没有经过 ( x i , y i ) \left( x_i, y_i \right) (xi,yi),那么这只小鸟飞行的全过程就不会对第 i i i 只小猪产生任何影响。

例如,若两只小猪分别位于 ( 1 , 3 ) (1,3) (1,3) ( 3 , 3 ) (3,3) (3,3),Kiana 可以选择发射一只飞行轨迹为 y = − x 2 + 4 x y=-x^2+4x y=x2+4x 的小鸟,这样两只小猪就会被这只小鸟一起消灭。

而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。

这款神奇游戏的每个关卡对 Kiana 来说都很难,所以 Kiana 还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。

假设这款游戏一共有 T T T 个关卡,现在 Kiana 想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。

输入格式

第一行包含一个正整数 T T T,表示游戏的关卡总数。

下面依次输入这 T T T 个关卡的信息。每个关卡第一行包含两个非负整数 n , m n,m n,m,分别表示该关卡中的小猪数量和 Kiana 输入的神秘指令类型。接下来的 n n n 行中,第 i i i 行包含两个正实数 x i , y i x_i,y_i xi,yi,表示第 i i i 只小猪坐标为 ( x i , y i ) (x_i,y_i) (xi,yi)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。

如果 m = 0 m=0 m=0,表示 Kiana 输入了一个没有任何作用的指令。

如果 m = 1 m=1 m=1,则这个关卡将会满足:至多用 ⌈ n / 3 + 1 ⌉ \lceil n/3 + 1 \rceil n/3+1 只小鸟即可消灭所有小猪。

如果 m = 2 m=2 m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少 ⌊ n / 3 ⌋ \lfloor n/3 \rfloor n/3 只小猪。

保证 1 ≤ n ≤ 18 1\leq n \leq 18 1n18 0 ≤ m ≤ 2 0\leq m \leq 2 0m2 0 < x i , y i < 10 0 < x_i,y_i < 10 0<xi,yi<10,输入中的实数均保留到小数点后两位。

上文中,符号 ⌈ c ⌉ \lceil c \rceil c ⌊ c ⌋ \lfloor c \rfloor c 分别表示对 c c c 向上取整和向下取整,例如: ⌈ 2.1 ⌉ = ⌈ 2.9 ⌉ = ⌈ 3.0 ⌉ = ⌊ 3.0 ⌋ = ⌊ 3.1 ⌋ = ⌊ 3.9 ⌋ = 3 \lceil 2.1 \rceil = \lceil 2.9 \rceil = \lceil 3.0 \rceil = \lfloor 3.0 \rfloor = \lfloor 3.1 \rfloor = \lfloor 3.9 \rfloor = 3 2.1=2.9=3.0=3.0=3.1=3.9=3

输出格式

对每个关卡依次输出一行答案。

输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量。

样例 #1

样例输入 #1

2
2 0
1.00 3.00
3.00 3.00
5 2
1.00 5.00
2.00 8.00
3.00 9.00
4.00 8.00
5.00 5.00

样例输出 #1

1
1

样例 #2

样例输入 #2

3
2 0
1.41 2.00
1.73 3.00
3 0
1.11 1.41
2.34 1.79
2.98 1.49
5 0
2.72 2.72
2.72 3.14
3.14 2.72
3.14 3.14
5.00 5.00

样例输出 #2

2
2
3

样例 #3

样例输入 #3

1
10 0
7.16 6.28
2.02 0.38
8.33 7.78
7.68 2.09
7.46 7.86
5.77 7.44
8.24 6.72
4.42 5.11
5.42 7.79
8.15 4.99

样例输出 #3

6

提示

【样例解释1】

这组数据中一共有两个关卡。

第一个关卡与【问题描述】中的情形相同, 2 2 2 只小猪分别位于 ( 1.00 , 3.00 ) (1.00,3.00) (1.00,3.00) ( 3.00 , 3.00 ) (3.00,3.00) (3.00,3.00),只需发射一只飞行轨迹为 y = − x 2 + 4 x y = -x^2 + 4x y=x2+4x 的小鸟即可消灭它们。

第二个关卡中有 5 5 5 只小猪,但经过观察我们可以发现它们的坐标都在抛物线 y = − x 2 + 6 x y = -x^2 + 6x y=x2+6x上,故 Kiana 只需要发射一只小鸟即可消灭所有小猪。

【数据范围】

测试点编号 n ⩽ n\leqslant n m = m= m= T ⩽ T\leqslant T
1 1 1 2 2 2 0 0 0 10 10 10
2 2 2 2 2 2 0 0 0 30 30 30
3 3 3 3 3 3 0 0 0 10 10 10
4 4 4 3 3 3 0 0 0 30 30 30
5 5 5 4 4 4 0 0 0 10 10 10
6 6 6 4 4 4 0 0 0 30 30 30
7 7 7 5 5 5 0 0 0 10 10 10
8 8 8 6 6 6 0 0 0 10 10 10
9 9 9 7 7 7 0 0 0 10 10 10
10 10 10 8 8 8 0 0 0 10 10 10
11 11 11 9 9 9 0 0 0 30 30 30
12 12 12 10 10 10 0 0 0 30 30 30
13 13 13 12 12 12 1 1 1 30 30 30
14 14 14 12 12 12 2 2 2 30 30 30
15 15 15 15 15 15 0 0 0 15 15 15
16 16 16 15 15 15 1 1 1 15 15 15
17 17 17 15 15 15 2 2 2 15 15 15
18 18 18 18 18 18 0 0 0 5 5 5
19 19 19 18 18 18 1 1 1 5 5 5
20 20 20 18 18 18 2 2 2 5 5 5

题目分析

  虽然很难,但是在偷看了一下题解的思路后艰难的开始了。我一直都有一种先入为主的想法,一旦某个方法复杂度很高,似乎就会一下子排除了,想都没想。而这题就需要从暴力方法想起,通过使用各种方法把暴力枚举变成富有技巧,本题也是。那我就从暴力开始分析思路
  首先是无脑暴力,就是枚举所有a和b,然后记录比较优秀的抛物线方程,最后统计出最少需要多少条。但是过于憨,没有脑子了
  接着就是稍微思考的暴力,明显需要打到猪猪猪才行,不然这个抛物线就是无用的,所以我们只需要列举能够打到猪猪猪2的方程就行,但是枚举方程需要三个点,所以我们希望一条抛物线可以最多打到两只猪,所以我们选取任意两只猪来枚举方程。但是需要注意的是,有一些点是不能构成方程的,这个后面再说。
  但是还有一个问题是抛物线列出来了,但是这有很多种情况,怎么存储这些情况能比较清楚的看出它每一个存储的是什么情况的?然后怎么比较最后的最少的能够击败所有的猪猪猪0的方程数量?
  于是就迎来了今天的主角,状态压缩!并且使用动态规划存储局部最优解来获得最后的全局最优解!那么又有疑问了?那我们的状态压缩要存储什么信息呢?这个就比较困难些,但是可以想想有什么可以用来存储的呢?方程,猪猪,也就这两个了,那肯定是猪猪,并且是存储它的状态,是否被消灭,用01来表示。而动态规划的数值则是使用的方程数(需要的小鸟的数量)。
  但是但是又要考虑一些奇葩的情况,比如有的猪猪猪1他比较特殊,他不能和其他任意一只猪组成一个方程组,那就要考虑他单独一种的情况。
  然后考虑动态规划方程怎么写,我上次说的抓住变化点,什么时候dp数组的值会发生变化,方程关系就从这个时候开始研究。很明显,我们已经用一条消灭了 ≥ \geq 1只小猪,准备考虑下一条消灭小猪的抛物线的时候。并且我们使用的是状态压缩保存的是小猪的消灭情况,所以dp[状态变化后]=min(dp[状态变化后],dp[状态变化前]+1)
  还有一点比较困难就是需要用一个数组来存储每条抛物线消灭猪猪情况,这样比较直观和方便,而每次需要查看下一条抛物线的时候我们就可以直接使用这个数组。否则状态改变就会比较难以操作
  理论存在,现在是实践时间!

感谢洛谷ghj1222提供的灵感和思路

注意事项

1.浮点数由于精度原因,判断值不同于整形,一般以1e-6为界限。判断ab相等fabs(a-b)<1e-6;判断a等于0fabs(a)<1e-6
2. 1<<n-1跟1<<(n-1)是一样的,所以要注意,我们这里用到的是(1<<n)-1
3.memset第一次用,才发现还需要string的文件头。#include<cstring>
4. |=真的是状态压缩神器,一直冥思苦想如何将一个状态压进入,但是如果这个状态本来就为1,如果用+就会进位了,这里用`|=``或操作。如果本来就为1就还是1,本来为0就改为1。
5.记得a和b需要好好计算,不然就会像某人还错了一次是因为b算错了,就很憨。怎么大学生算二元一次方程组还会错啊?😝😢
6.有个地方不太明白就是本来我是用函数算a和b然后存到pair数组里面,后面再调用,在自己编译器上都是对的,但是不知道为什么提交就是WA+RE了,不知道什么情况,pair数组存不了那么多还是什么的。后来改到里面就AC了。

代码

耶

#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;

int T,n,m,dp[5262150],sta[800];//sta表示第i条抛物线打猪的状态
double x[35]= {0},y[35]= {0};
int main()
{
	cin>>T;
	for(int unicorn = 0; unicorn < T ; unicorn ++) {
		cin>>n>>m;
		memset(dp,0x3f,sizeof(dp));
		memset(sta,0,sizeof sta);
		dp[0]=0;
		for(int i=0; i<n; i++) {
			cin>>x[i]>>y[i];
		}
		int point=0;
		for(int i = 0; i<n; i++) {
			for(int j=i+1; j<n; j++) {
				if(fabs(x[i]-x[j])<1e-6)
					continue;
				double a,b;
				a=(x[j]*y[i]-x[i]*y[j])/(x[j]*x[i]*x[i]-x[i]*x[j]*x[j]);
				if(a>=0)continue;
				b=(x[j]*x[j]*y[i]-x[i]*x[i]*y[j])/(x[i]*x[j]*x[j]-x[i]*x[i]*x[j]);
				for(int k =0; k<n; k++) {
					if(fabs(a*x[k]*x[k]+b*x[k]-y[k])<1e-6) {
						sta[point] |= 1<<k;
					}
				}
				point++;


			}
		}
		//从小到大枚举所有状态
		for (int k = 0; k <= (1<<n)-1; k++) {
			for (int i = 0; i < point; i++) {
				dp[k | sta[i]] = min(dp[k | sta[i]], dp[k] + 1);
			}
			for (int i = 0; i < n; i++)
				dp[k | (1 << i)] = min(dp[k | (1 << i)], dp[k] + 1);
		}
		printf("%d\n", dp[(1<<n) -1]);
	}
	return 0;
}

后话

额外测试用例

因为a和b算错而获得了一个用例
啊哦1

样例输入 #4

10 
7 0 
5.12 1.23 
2.34 4.41 
4.30 0.91 
4.36 0.65 
5.88 2.15 
8.13 6.07 
2.28 5.92 
8 0 
5.86 5.06 
5.86 4.85 
9.20 2.41 
0.08 3.73 
5.21 1.90 
8.92 9.29 
7.54 8.92 
0.69 0.05 
8 0 
5.46 9.92 
6.28 1.35 
8.82 3.53 
6.97 6.00 
3.33 3.00 
0.76 4.36 
0.44 5.29 
4.49 1.01 
8 0 
5.12 2.82 
1.23 1.00 
5.22 4.30 
4.01 3.75 
6.52 5.27 
2.74 0.44 
6.40 2.94 
3.16 1.02 
8 0 
2.45 0.21 
5.18 5.92 
5.66 9.65 
3.25 1.30 
4.63 1.00 
1.48 0.05 
5.47 6.61 
5.24 6.86 
7 0 
7.44 8.58 
9.12 8.86 
3.31 5.35 
7.97 7.47 
3.64 0.18 
1.48 6.23 
8.03 6.14 
8 0 
6.76 1.31 
1.10 9.53 
4.20 2.90 
3.74 0.56 
2.91 7.09 
9.77 8.82 
9.14 6.51 
1.61 0.73 
7 0 
6.45 5.24 
4.17 8.31 
2.87 0.74  
3.90 5.09  
1.51 1.71  
1.35 0.92 
1.29 0.25 
7 0 
7.83 6.31 
2.09 4.38 
8.01 5.98 
8.88 3.15 
2.40 1.10 
1.66 7.47 
8.37 9.10 
8 0 
7.86 9.04 
8.90 1.59 
0.03 0.09 
0.11 0.09 
3.04 2.99 
6.61 5.47 
4.98 0.68 
8.44 9.26 

样例输出 #4

4
5
4
5
6
4
4
5
4
4

还有莫名其妙的错误图,在自己的编译器上都是没问题的
哭泣

王婆卖瓜

感觉有收获或者想跟上我的进度刷题的,可以点个关注,或者点赞收藏评论都可以!

题目来源

NOIP 2016 提高组D2T3
洛谷链接
图片来源360百科和wiki

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值