一、基本原理
测量平差是德国数学家高斯于1821~1823年在汉诺威弧度测量的三角网平差中首次应用,以后经过许多科学家的不断完善,得到发展,测量平差已成为测绘学中很重要的、内容丰富的基础理论与数据处理技术之一。
图一 三角网平差
由于测量仪器的精度不完善和人为因素及外界条件的影响,测量误差总是不可避免的。为了提高成果的质量,处理好这些测量中存在的误差问题,观测值的个数往往要多于确定未知量所必须观测的个数,也就是要进行多余观测。有了多余观测,势必在观测结果之间产生矛盾,测量平差的目的就在于消除这些矛盾而求得观测量的最可靠结果并评定测量成果的精度。测量平差采用的原理就是“最小二乘法”。
测量平差是用最小二乘法原理处理各种观测结果的理论和计算方法。测量平差的目的在于消除各观测值间的矛盾,以求得最可靠的结果和评定测量结果的精度。任何测量,只要有多余观测,就有平差的问题。
二、项目中的平差
随着测绘成果不断的电子化与信息化,测量平差的概念很少被人体及,生产工具的不断进步和项目生产管理体系的科学化使得多数地信类项目不在需要进行平差。
实际上在我们做项目的过程中还是有很多项目需要进行平差计算的,如国土调查类项目,这部分数据最终都是要回归椭球面积进行面积控制,所以必须要进行平差。
图二 三调相关规范中面积控制部分目录
而在实际项目生产中的平差是怎样的呢?
图三 为面积为10000平方米的矩形图斑
图四 矩形分割后并且面积保留两位小数后的汇总面积