2022-04-30每日刷题打卡
代码源——每日一题
切割 - 题目 - Daimayuan Online Judge
题目描述
有一个长度为 ∑ai 的木板,需要切割成 n 段,每段木板的长度分别为 a1,a2,…,an。
每次切割,会产生大小为被切割木板长度的开销。
请你求出将此木板切割成如上 n 段的最小开销。
输入格式
第 1 行一个正整数表示 n。
第 2 行包含 n 个正整数,即 a1,a2,…,an。
输出格式
输出一个正整数,表示最小开销。
样例输入
5
5 3 4 4 4
样例输出
47
数据范围
对于全部测试数据,满足 1≤n,ai≤10^5。
进阶
需要 O(n) 解法的 数据加强版(1≤n≤107,1≤ai≤105)
先说基础的O(nlogn)做法:
这题可以反向考虑,即小的合成大的,每次费用是两个小的值的总和,问合成一个所需要的能量最少是多少。(不用选相邻的,不是合并石子)
那我们就每次选最小的两个放一起即可,贪心做法,这样每次合成所要的能量肯定是最少的。所以我们可以用一个数据结构每次把最小的两个木板找出来,把他们两个合成后再放回去,继续下一步操作,直到只剩一个木板为止。这个数据结构可以用set,map或优先队列等自己带有排序功能的(但注意set和map会去重),也可以自己写一个线段树找区间最小值,这里为方便我选的是优先队列。
#include<iostream>
using namespace std;
#include<vector>
#include<algorithm>
#include<math.h>
#include<set>
#include<numeric>
#include<string>
#include<string.h>
#include<iterator>
#include<map>
#include<unordered_map>
#include<stack>
#include<list>
#include<queue>
#include<iomanip>
#define endl '\n';
typedef long long ll;
typedef pair<ll, ll>PII;
const int N = 1e6;
inline int read() {
int x = 0; char ch = getchar();
while (ch < '0' || ch > '9') ch = getchar();
while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
return x;
}
inline void write(long long x) {
if (x > 9) write(x / 10);
putchar(x % 10 | '0');
}
int main()
{
int n;
n = read();
vector<ll>v(n);
priority_queue<ll,vector<ll>,greater<ll>>que;
for (int i = 0; i < n; i++)
{
v[i] = read();
que.push(v[i]);
}
ll res = 0;
while (que.size() != 1)
{
ll ans = 0;
ans += que.top();
que.pop();
ans += que.top();
que.pop();
res += ans;
que.push(ans);
}
write(res);
return 0;
}
进阶做法:
此时数据量达到了1e7,说明我们的复杂度只能是n或更小(如果有),那么此时显然不能用之前的做法了,毕竟优先队列插入就是logn的复杂度,总复杂度是nlogn,就算是想手动找最小的,但光是排序复杂度就是nlogn了,显然也不行。
要是连排序都排序不了那我们该怎么做呢?
但实际上我们还是可以排序的,题目这里只修改了n的数据大小,没有修改ai的,而ai最大才1e5,这就给了我们机会,我们可以准备一个长度为1e5+1的数组v,每次以元素的值为下标,修改数组v的值,比如元素是2,那就是下标为2的位置,数值+1。举个例子,长度为5的数组v,初始是0 0 0 0 0(下标1开始) ,要排序的元素有1 4 5 2 4 3,那么经过我们操作后就变成了:1 1 1 2 1,即值为1的元素有1个,2的元素有1个……5的元素有1个。这样就排好序了,这样时间复杂度就是On了,我们只用遍历长度为n的元素,然后O1的复杂度修改数组v的值。排序好了后,我们可以准备两个队列,一个a存下我们排好序的v数组(小的先进),一个b初始为空,用来后面存下我们合并后的木板。
我们每次从两个队列中总共取两个木板出来,那边的队头最小就取哪边,合并之后放在准备好的队列b里,这样可以使得两边的队列始终递增有序,一直合并到两个队列总元素为1时结束。
#include<iostream>
using namespace std;
#include<vector>
#include<algorithm>
#include<math.h>
#include<set>
#include<numeric>
#include<string>
#include<string.h>
#include<iterator>
#include<map>
#include<unordered_map>
#include<stack>
#include<list>
#include<queue>
#include<iomanip>
#define endl '\n';
typedef long long ll;
typedef pair<ll, ll>PII;
const int N = 1e6;
inline int read() {
int x = 0; char ch = getchar();
while (ch < '0' || ch > '9') ch = getchar();
while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
return x;
}
inline void write(long long x) {
if (x > 9) write(x / 10);
putchar(x % 10 | '0');
}
int main()
{
ll n, x, ans = 0;
n = read();
queue<ll>que,mx;
vector<ll>v(1e5 + 50);
for (int i = 0; i < n; i++)
{
x = read();
ans = max(ans, x);
v[x]++;
}
for (int i = 1; i <= ans; i++)
{
for (int j = 0; j < v[i]; j++)
{
que.push(i);
}
}
ll res = 0;
while (que.size() + mx.size() != 1)
{
ans = 0;
if (!mx.empty())
{
if (que.empty())
{
ans += mx.front();
mx.pop();
}
else if (mx.front() < que.front())
{
ans += mx.front();
mx.pop();
}
else
{
ans += que.front();
que.pop();
}
}
else
{
ans += que.front();
que.pop();
}
if (!mx.empty())
{
if (que.empty())
{
ans += mx.front();
mx.pop();
}
else if (mx.front() < que.front())
{
ans += mx.front();
mx.pop();
}
else
{
ans += que.front();
que.pop();
}
}
else
{
ans += que.front();
que.pop();
}
res += ans;
mx.push(ans);
}
write(res);
return 0;
}