孪生神经网络
slothfulxtx
这个作者很懒,什么都没留下…
展开
-
SiamRPN++
Paper : SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks Code : official 摘要 作者研究的核心是如何将网络深度较深的结构应用到SiamRPN网络中。作者发现现有的SiamRPN以及它的改进大多使用AlexNet等相对来说深度比较低的CNN结构进行feature extraction,而使用例如ResNet之类深度较深的结构对于Object Tracking任务来说并没有明显的提升。作者经.原创 2020-06-28 23:50:16 · 1004 阅读 · 0 评论 -
Siam Mask
Paper : Fast Online Object Tracking and Segmentation: A Unifying Approach Code : official 摘要 作者提出了SiamMask 的结构,可以根据上一帧的bounding box的信息对下一帧的分割掩膜进行预测, 然后再在掩膜的基础上生成该帧对应的bounding box。与其他Segmentation 的方法相比,该结构采用bbox进行mask预测,因此速度会快很多。SiamMask的实现方法比较简单,在SiamRPN.原创 2020-06-28 20:02:58 · 721 阅读 · 1 评论 -
DaSiamRPN
Paper : Distractor-aware Siamese Networks for Visual Object Tracking Code : official 摘要 作者在做完SiamRPN之后,发现虽然跟踪的框已经回归地比较好了,但是响应的分数仍然相当不可靠,具体表现为在丢失目标的时候,分类的分数仍然比较高。作者认为这主要是由于以下两点造成的 正样本种类不够多,导致模型的泛化性能不够强 在之前的孪生网络训练中, 负样本过于简单,很多是没有语义信息的,只是单纯的背景 因此,作者针对这两个问.原创 2020-06-24 21:57:17 · 953 阅读 · 0 评论 -
Siamese RPN
Paper : High Performance Visual Tracking with Siamese Region Proposal Network Code : unofficial 摘要 之前在阅读SiamFC的时候就感觉目标追踪与物体检测在候选框生成上可以有很多互相借鉴的地方,而且SiamFC存在两个问题:一个是遍历的方法容易成为时间瓶颈,另一个是定位框处理有点太粗糙了,不仅固定了尺寸还固定了长宽比。在目标检测上提出的RPN迟早要迁移到物体追踪的任务中。因此商汤在CVPR2018中掏出了一篇.原创 2020-06-24 14:46:01 · 1363 阅读 · 0 评论 -
SiamFC
Paper : Fully-Convolutional Siamese Networks for Object Tracking Code : official 摘要 尽管之前有论文尝试将深度卷积神经网络应用到Object tracking 的任务中,但是由于实时性的要求,以及训练数据集的数据存在稀缺性,效果并不是很好。作者针对实时性的限制,提出使用全卷积神经网络进行特征提取,并使用孪生神经网络进行训练,并在ILSVRC15的数据集上进行训练,在VOT ALOV OTB数据集上进行测试。本文主要的贡献点.原创 2020-06-22 18:39:03 · 433 阅读 · 0 评论 -
Learning to Compare Image Patches via Convolutional Neural Networks
Paper : Learning to Compare Image Patches via Convolutional Neural Networks Code : 摘要 个人认为,本文在孪生神经网络上没什么改进点,值得阅读的点是对双通道、孪生神经网络和伪孪生神经网络之间实验效果的比较,但是文章中所提到的在Image Patch Comparison 中引入CNN和SPP Net 感觉不算创新。使用CNN代替传统的人为设计的特征提取方法,例如SIFT或是HOG或是DAISY之类的在2015年基本上都用滥.原创 2020-06-22 13:15:44 · 729 阅读 · 0 评论 -
Learning a Similarity Metric Discriminatively with Application to Face Verification
Paper : Learning a Similarity Metric Discriminatively, with Application to Face Verification Code : 摘要 Yann LeCun 提出的使用CNN进行孪生网络中子网络的特征提取,进行人脸识别的任务。作者认为,相比于其他的算法,Contrastive Loss+CNN的结构适合以下几种任务 类别较多,单一类别下训练样本较少的任务 训练时不知道具体的类别数,只知道总类别的某个子集 个人认为,这篇文章主要贡献有.原创 2020-06-21 23:07:58 · 387 阅读 · 0 评论 -
Signature Verification using a Siamese Time Delay Neural Network
Paper : Signature Verification using a “Siamese” Time Delay Neural Network Code : 摘要 LeCun在“Signature Verification using a “Siamese” Time Delay Neural Network” 一文中首次提出孪生神经网络的概念。对于孪生神经网络(非伪孪生神经网络),与其说它是一种网络结构,不如说Siamese Network 是一种针对特定任务训练特征提取器的损失函数(类.原创 2020-06-21 17:24:50 · 2737 阅读 · 1 评论