矩阵快速幂 黑科技

ll qpow(ll x,ll y)
{
    ll res=1;
    for(;y;y>>=1,x=x*x%mod)
        if(y&1)res=res*x%mod;
    return res;
}

int n;
namespace xx
{
const int N=10010;
ll res[N],base[N],z[N],md[N];

vector<int>G;
void mul(ll *a,ll *b,int k)
{
    for(int i=0; i<k+k; i++)
        z[i]=0;
    for(int i=0; i<k; i++)
        if(a[i])
            for(int j=0; j<k; j++)
                z[i+j]=(z[i+j]+a[i]*b[j])%mod;
    for(int i=k+k-1; i>=k; i--)
        if(z[i])
            for(int j=0; j<G.size(); j++)
                z[i-k+G[j]]=(z[i-k+G[j]]
                -z[i]*md[G[j]])%mod;
    for(int i=0; i<k; i++)
        a[i]=z[i];
}
int solve(ll n,vector<int> a,vector<int> b)
{
    ll ans=0,pnt=0;
    int k=a.size();
    for(int i=0; i<k; i++)
        md[k-1-i]=-a[i];
    md[k]=1;
    G.clear();
    for(int i=0; i<k; i++)
        if(md[i]!=0)G.push_back(i);
    for(int i=0; i<k; i++)
        res[i]=base[i]=0;
    res[0]=1;
    while((1ll<<pnt)<=n)pnt++;
    for(int p=pnt; p>=0; p--)
    {
        mul(res,res,k);
        if((n>>p)&1)
        {
            for(int i=k-1; i>=0; i--)
                res[i+1]=res[i];
            res[0]=0;
            for(int j=0; j<G.size(); j++)
                res[G[j]]=(res[G[j]]-res[k]*md[G[j]])%mod;
        }
    }
    for(int i=0; i<k; i++)
        ans=(ans+res[i]*b[i])%mod;
    return (ans+mod)%mod;
}
vector<int> BM(vector<int> s)
{
    vector<int> C(1,1),B(1,1);
    int L=0,m=1,b=1;
    for(int n=0; n<s.size(); n++)
    {
        ll d=0;
        for(int i=0; i<L+1; i++)
            d=(d+(ll)C[i]*s[n-i])%mod;
        if(d==0) ++m;
        else if(2*L<=n)
        {
            vector<int> T=C;
            ll c=mod-d*qpow(b,mod-2)%mod;
            while(C.size()<B.size()+m)
                C.push_back(0);
            for(int i=0; i<B.size(); i++)
                C[i+m]=(C[i+m]+c*B[i])%mod;
            L=n+1-L,B=T,b=d,m=1;
        }
        else
        {
            ll c=mod-d*qpow(b,mod-2)%mod;
            while (C.size()<B.size()+m)
                C.push_back(0);
            for(int i=0; i<B.size(); i++)
                C[i+m]=(C[i+m]+c*B[i])%mod;
            ++m;
        }
    }
    return C;
}
int gao(vector<int> a,ll n)
{
    vector<int> c=BM(a);
    c.erase(c.begin());
    for(int i=0; i<c.size(); i++)
        c[i]=(mod-c[i])%mod;
    return solve(n,c,vector<int>
    (a.begin(),a.begin()+c.size()));
}
};

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        printf("%d\n",xx::gao(vector<int>
        {2,24,96,416,1536,5504,18944,64000,212992,702464},n-1));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值