【ComfyUI专栏】ComfyUI 的Olllma节点进行提示词优化

当前我们可以通过Ollama 来优化提示词效果,在这里 我们需要下载Ollama 相关程序,当前下载Windows 版本用于安装。
https://ollama.com/download

安装OllaMa程序相对比较简单,直接通过点击下一步可以完成安装。我们在命令行模式下执行Ollama –version 获取当前的执行版本,成功后证明安装成功。

安装完成后我们需要定义OllaMa的环境配置,我们可以通过系统配置或者Env的方式来进行设置。

Mistral、qwen、llama2 OllaMa为我们的常用模型,我们通过执行如下命令进行模型下载:
ollama run llama2(模型) 

### 关于 ComfyUI 的中文 LoRA 教程与资源 #### 已知信息概述 ComfyUI 是一款用于生成图像的工作流工具,提供了丰富的功能和灵活的操作方式。已有资料表明,存在一套完整的 ComfyUI 基础教程[^1],涵盖了从安装到高级应用的多个方面。此外,在工作流获取上也提到了可以直接通过某些平台下载 `.json` 文件来加载预设工作流[^2]。 然而,关于 **中文 LoRA 资源或教程** 的具体指向尚未提及。以下是基于现有信息整理的内容: --- #### 如何查找与使用 ComfyUI 中文 LoRA 资源? ##### 1. 官方文档与社区论坛 尽管官方文档可能主要以英文为主,但许多第三方开发者会在国内外技术社区分享自己的经验。可以尝试访问以下渠道: - Bilibili 或知乎上的相关专栏文章。 - GitHub 上由国内开发者维护的项目仓库,通常会附带详细的 README 文档说明如何配置和运行 LoRA 模型[^3]。 ##### 2. FLUX 工作流的应用实例 提到的一个重要线索是 `FLUX.1-dev-gguf` 工作流,它被证明适用于较低显存环境(如 6GB 显存),并且支持多语言提示词输入。如果目标是快速部署一个可用的 LoRA 测试场景,则可以从该工作流入手,并调整参数适配特定需求。 ##### 3. JSON 文件导入流程 对于已经获得的 `.json` 格式的 LoRA 配置文件,操作非常简单:只需将其拖放到 ComfyUI 应用界面内即可完成加载。这一步骤无需额外注册账户或者经历复杂验证过程。 ##### 4. 推荐站点筛选标准 当搜索更多类似的开源素材时,请注意甄别可信度较高的来源链接。优先考虑那些提供详尽背景介绍、评论区活跃且反馈正面的页面;同时也要留意是否有明确标注版本兼容性信息以防不必要麻烦发生。 --- ### 提供一段 Python 示例代码辅助解析 .json 数据结构 假设用户希望进一步理解所下载下来的 LoRA 设置项含义,下面给出一小段脚本作为参考: ```python import json def load_lora_config(file_path): with open(file_path, 'r', encoding='utf-8') as f: config_data = json.load(f) # 打印部分键值对以便初步了解内容布局 for key in list(config_data.keys())[:5]: print(f"{key}: {config_data[key]}") if __name__ == "__main__": lora_file = "path/to/your/lora.json" load_lora_config(lora_file) ``` 此函数能够读取指定路径下的 JSON 文件并将前几个字段展示出来,方便后续深入分析。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雾岛心情

欢迎你的打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值