排列组合公式/排列组合计算公式

排列是指从给定个数的元素中取出指定个数的元素进行排序。
组合是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合公式/排列组合计算公式 - JQD - The future is in my

公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-
元素的总个数
R
参与选择的元素个数
-阶乘 ,如    9!=9*8*7*6*5*4*3*2*1

N倒数r个,表达式应该为n*n-1)*(n-2)..(n-r+1);

                因为从n到(n-r+1)个数为n-(n-r+1)r

举例:

Q1:    有从19共计9个号码球,请问,可以组成多少个三位数?

A1:     123213是两个不同的排列数。即对排列顺序有要求的,既属于排列P”计算范畴。

       上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P39)9*8*7,(9倒数3个的乘积)

Q2:    有从19共计9个号码球,请问,如果三个一组,代表三国联盟,可以组合成多少个三国联盟

A2:     213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于组合C”计算范畴。

        上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1

排列、组合的概念和公式典型例题分析

  1  设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?

     解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

      (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.

  点评   由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.

    2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?

  解   依题意,符合要求的排法可分为第一个排中的某一个,共3类,每一类中不同排法可采用画树图的方式逐一排出:

    符合题意的不同排法共有9种.

  点评   按照分的思路,本题应用了加法原理.为把握不同排法的规律,树图是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.

  例3 判断下列问题是排列问题还是组合问题?并计算出结果.

  (1)高三年级学生会有11人:每两人互通一封信,共通了多少封信?每两人互握了一次手,共握了多少次手?

  (2)高二年级数学课外小组共10人:从中选一名正组长和一名副组长,共有多少种不同的选法?从中选2名参加省数学竞赛,有多少种不同的选法?

  (3)有235711131719八个质数:从中任取两个数求它们的商可以有多少种不同的商?从中任取两个求它的积,可以得到多少个不同的积?

  (4)有8盆花:从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?从中选出2盆放在教室有多少种不同的选法?

  分析 (1由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.

  (1是排列问题,共用了封信;是组合问题,共需握手(次).

  (2是排列问题,共有(种)不同的选法;是组合问题,共有种不同的选法.

  (3是排列问题,共有种不同的商;是组合问题,共有种不同的积.

  (4是排列问题,共有种不同的选法;是组合问题,共有种不同的选法.

  例4 证明

  证明  左式

             右式.

     等式成立.

  点评 这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.

  例5 化简

  解法一 原式

             

  解法二 原式

  点评   解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.

  例6 解方程:(1;(2

  解 (1)原方程

              

               解得

    (2)原方程可变为

     

     原方程可化为

     即 ,解得

第六章  排列组合、二项式定理

一、考纲要求

1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.

2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.

3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.

二、知识结构

       

三、知识点、能力点提示

()加法原理乘法原理

说明  加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排 列、组合中有关问题提供了理论根据.

1  5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?

解:  5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的 报名方法,根据乘法原理,得到不同报名方法总共有

3×3×3×3×3=35()

()排列、排列数公式

说明  排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研 究的对象以及研 究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.

2  由数字12345组成没有重复数字的五位数,其中小于50 000的 偶数共有(    )

A.60        B.48        C.36        D.24

  因为要求是偶数,个位数只能是24的排法有P12;小于50 000的五位数,万位只能是1324中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P1236()

由此可知此题应选C.

3  将数字1234填入标号为1234的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?

解:  将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 331424123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为

3P13=9().

例四 例五可能有问题,等思考

 

 

)组合、组合数公式、组合数的两个性质

说明  历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.

4  4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有(    )

A.140      B.84      C.70       D.35

解:  抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15

根据加法原理可得总的取法有

C24·C25+C24·C15=40+30=70( )

可知此题应选C.

5  甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?

解:  甲公司从8项工程中选出3项工程的方式 C38种;

乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;

丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;

丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22.

根据乘法原理可得承包方式的种数有C3 8×C15×C24×C22=×1=1680().

()二项式定理、二项展开式的性质

说明  二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.

6  (x-)10的展开式中,x6的系数是(    )

A.-27C610        B.27C410        C.-9C610        D.9C410

  (x-)10的展开式中第γ+1项含x6

Tγ+1=Cγ10x10-γ(-)γ10-γ=6,γ=4

于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410

故此题应选D.

7    (x-1)-(x-1)2(x-1)3-(x-1)+(x-1)的展开式中的x的系数等于                

解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为

(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.

()综合例题赏析

8  (2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为(    )

A.1                        B.-1             C.0           D.2

解:A.

9  2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有(    )

A.6            B.12          C.18            D.24

  分医生的方法有P222种,分护士方法有C24=6种,所以共有6×212种不同的分配方法。

应选B.

10  4台甲型和5台乙型电视机中任意取出3台,其 中至少要有甲型与乙型电视机各1台,则不同取法共有(    ).

A.140          B.84          C.70           D.35

解:取出的3台电视机中,甲型电视机分为恰有一台和恰有二台两种情形.

∵C24·+C25·C14=5×6+10×4=70.

应选C.

11  某小组共有10名学生,其中女生3名,现选举2 名代表,至少有1名女生当选的不同选法有(    )

A.27      B.48      C.21       D.24

解:分恰有1名女生和恰有2名女生代表两类:

∵C13·C1 7+C23=3×7+3=24

应选D.

12  由数学012345组成没有重复数字的 六位数,其中个位数字小于十位数字的共有(    ).

A.210                  B.300

C.464                  D.600

解:先考虑可组成无限制条件的六位数有多少个?应有P15·P 55=600.

由对称性,个位数小于十位数的六位数和个位数大于十位数的六位数各占一半.

×600=300个符合题设的六位数.

应选B.

13  以一个正方体的顶点为顶点的 四面体共有(    ).

A.70                   B.64

C.58                   D.52

解:如图,正方体有8个顶点,任取4个的组合数为C48=70.

其中共面四点分3类:构成侧面的有6组;构成垂直底面的对角面的有2组;形如(ADB1C1 )的有4.

能形成四面体的有70-6-2-4=58()

应选C.

14  如果把两条异面直线看成一对,那么六棱 锥的棱所在的12条直线中,异面直线共有(    ).

A.12                      B.24

C.36                      D.48

解:设正六棱锥为O—ABCDEF.

任取一侧棱OA(C16)OABCCDDEEF均形成异面直线对.

共有C16×4=24对异面直线.

应选B.

15  正六边形的中心和顶点共7个点,以其中三个点 为顶点的三角形共         (以数字作答).

解:7点中任取3个则有C37=35.

其中三点共线的有3(正六边形有3条直径).

三角形个数为35-3=32.

16  设含有10个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则的值为                

  10个元素的集合的全部子集数有:

SC010+C110+C210+C310+C410+C510+C610+C710+C810+C910+C1010=2 10=1024

其中,含3个元素的子集数有T=C310=120

=

17        17        50件产品 n 中有4件是次品,从中任意抽了5件 ,至少有3件是次品的抽法共

           (用数字作答).

解:至少3件次品3件次品4件次品”.

∴C34·C246+C44·C146=4186()

18  有甲、乙、丙三项任务,甲需2人承担,乙、 丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有(    ).

A.1260                     B.2025

C.2520                     D.5040

解:先从10人中选2个承担任务甲(C210)

再从剩余8人中选1人承担任务乙(C1 8)

又从剩余7人中选1人承担任务乙(C1 7)

C210·C1 8C1 7=2520().

应选C.

19  集合{123}子集总共有(    ).

A.7      B.8      C.6       D.5

  三个元素的集合的子集中,不含任何元素的子集有一个,由一个元素组成的子集数

C13,由二个元素组成的子集数C23

3个元素组成的子集数C33。由加法原理可得集合子集的总个数是

C13+C23+C33+1=3+3+1+18

故此题应选B.

20  假设在200件产品中有3件是次品,现在从中任意抽取5件,其中至少有两件次品的抽法有(    ).

A.C23C3197        B.C23C3197 +C33C2197

C.C5200-C5197                D.C5200-C 13C4197

解:5件中恰有二件为次品的抽法为C23C3197

5件中恰三件为次品的抽法为C33C2197

至少有两件次品的抽法为C23C3197+C33C2197.

应选B.

21  两排座位,第一排有3个座位,第二排有5个座位,若8名学生入座(每人一个座位),则不同座法的总数是(    ).

A.C58C38         B.P12C58C38   C.P58P3

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值