猿辅导课堂上老师提供了一些角色,学生可以从中选择一个自己喜欢的角色扮演,每3个不同的角色就可以组成一个小组,进行分组对话。
当老师点击开始分组对话按钮的时候,服务器会为已经选择自己角色的同学分配对话小组,请问最多能组成多少个对话小组?
输入描述:
第一行为测试用例数量C(C<=100),接下来的C行每行为一个测试用例
每个用例的第一个数字表示可供选择的角色数量T(T<=1000),接下来的T个数字表示每个角色的选择人数Pi(Pi<=500)
输出描述:
一共C行,每行表示一个测试用例中的最大对话小组数量。
示例1
输入
3
3 1 1 1
3 2 2 3
4 0 2 3 99
输出
1
2
2
说明
对于用例1,正好3个不同角色,每个角色1个人选,于是构成且只能构成一个小组。
对于用例2,在构成两个小组之后,第3个角色单了1人无法构成任何小组,所以最大小组数量是2。
对于用例3,学生扎堆选择了最后一个角色,但是第二个角色只有2个人,所以还是只能构成2个对话小组。
自己的做法: 将最大的三堆 提出,然后 减去 这三堆中最小的,(直接降为0)
实际上大错特错: 这样就直接减少了一个分组,导致最后,很容易造成 凑不成 3个不同的角色组成一个小组。
正解: 利用优先队列 每次从人数最多的三个角色出各取一人 组成一组,然后再放回 优先队列中,(保证每一次都是从人数最多的三个角色出各取一人) 这样保证使其最后的角色人数为(1,1,1) 而不是 (3,0,0)这种情况。
import java.util.PriorityQueue;
import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner input;
int C, T, i, j;
int[][] P;
input = new Scanner(System.in);
C = input.nextInt();
P = new int[C][];
for(i = 0; i < C; i++){
T = input.nextInt();
P[i] = new int[T];
for(j = 0; j < T; j++){
P[i][j] = input.nextInt();
}
}
for(i = 0; i < C; i++){
System.out.println(solve(P[i]));
}
input.close();
}
private static int solve(int[] P){
int first, second, third, ans = 0;
PriorityQueue<Integer> pq = new PriorityQueue<Integer>((a,b)-> b-a);
for(int p : P) {
if(p > 0)pq.offer(p);
}
while(pq.size() > 2){
first = pq.poll();
second = pq.poll();
third = pq.poll();
if(--first > 0){
pq.offer(first);
}
if(--second > 0){
pq.offer(second);
}
if(--third > 0){
pq.offer(third);
}
ans++;
}
return ans;
}
}