数据归一化

数据归一化是预处理的重要步骤,目的是统一量纲,优化模型训练。文中介绍了线性函数归一化(将数据转换到[0,1]范围)和0均值标准化(Z-score,使数据集均值为0,方差为1),后者适用于近似高斯分布的数据。讨论了两种方法对二维数据集方差和协方差的影响,并提供了参考资料。" 50405356,5551725,Linux内核3.10.x:PID哈希链表解析,"['内核', 'Linux', '进程管理', 'PIDhash']
摘要由CSDN通过智能技术生成

数据归一化
目的
- 统一量纲
- 达到更好的模型训练效果(如BP算法中加速收敛)

方法

线性函数归一化

如使用原始数据的最小、最大值将原始数据变换到[0,1]范围内
这里写图片描述

0均值标准化(Z-score standardization)

将原始数据转化为均值为0,方差为1的数据集,公式为
这里写图片描述
其中,μ、σ分别为原始数据集的均值、方差。该方法要求原始数据的分布近似为高斯分布,否则归一化的效果会变差。
那什么情况下使用什么归一化方法呢?
首先考察两种方法对二维数据集X,Y的方差和协方差的影响。
对于线性函数归一化

X=CXY=CY
归一化后的方差为
cov(X,Y)=(CXiCX¯¯¯)(CYiCY¯¯¯)n1=Ccov(X
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值