(协)方差的归一化因子

随机变量X,假定其实际均值和方差为\mu\sigma^2,则\mu\sigma^2的定义为:

\mu=\mathbb{E}(X)

\sigma^2=\mathbb{E}\left[\left(X-\mathbb{E}(X)\right)^2\right]

通过推导可以得到:

\begin{aligned} \sigma^2 &=\mathbb{E}\left[\left(X-\mathbb{E}(X)\right)^2\right] \\ &=\mathbb{E}\left[X^2-2X\mathbb{E}(X)+\mathbb{E}(X)^2\right] \\ &=\mathbb{E}(X^2)-2\mathbb{E}(X)^2+\mathbb{E}(X)^2 \\ &=\mathbb{E}(X^2)-\mathbb{E}(X)^2\end{aligned}

(1)如果分布的真实均值\mu已知

采样得到N个样本x_1,\cdots,x_N,利用样本对整体进行估计,估计的方差为\hat{\sigma}^2,则:

\hat{\sigma}^2=\frac{1}{N} \sum_{i=1}^{N}\left(x_i-\mu\right)^2

对估计进行评估: 

\begin{aligned} \mathbb{E}[\hat{\sigma}^2] & =\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^N\left(x_i-\mu\right)^2\right] \\ & =\frac{1}{N} \sum_{i=1}^N \mathbb{E}\left[\left(x_i-\mu\right)^2\right] \\ & =\frac{1}{N} \sum_{i=1}^N \mathbb{E}\left[x_i^2-2 x_i \mu+\mu^2\right] \\ & =\frac{1}{N}\left(N \mathbb{E}\left[x_i^2\right]-2 N \mu \mathbb{E}\left[x_i\right]+N \mu^2\right) \\ & =\frac{1}{N}\left(N \mathbb{E}\left[x_i^2\right]-2 N \mu^2+N \mu^2\right) \\ & =\frac{1}{N}\left(N \mathbb{E}\left[x_i^2\right]-N \mu^2\right) \\ & = \mathbb{E}\left[x_i^2\right]- \mu^2\\ & = \mathbb{E}\left[X^2\right]- \mathbb{E}(X)^2 \\ & = \sigma^2\end{aligned}

值得注意的是,推导过程中用到了两个性质:

\mathbb{E}[x_i]=\mathbb{E}[X]=\mu

\mathbb{E}[x_i^2]=\mathbb{E}[X^2]

此时,样本估计的方差\hat{\sigma}^2是真实方差\sigma^2的无偏估计

(2)如果分布的真实均值未知

采样得到N个样本x_1,\cdots,x_N,利用样本对整体进行估计,估计的均值和方差为\hat{\mu}\hat{\sigma}^2,则:

\hat{\mu}=\frac{1}{N} \sum_{i=1}^N\left(x_i\right)

\hat{\sigma}^2=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_i-\hat{\mu}\right)^2

1)对估计的均值\hat{\mu}进行评估:

\mathbb{E}[\hat{\mu}]=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^N\left(x_i\right)\right]=\frac{1}{N} \sum_{i=1}^N \mathbb{E}\left[x_i\right]=\frac{1}{N} N \mathbb{E}\left[x_i\right]=\frac{1}{N} N \mu=\mu

值得注意的是,推导过程中用到了一个性质:

\mathbb{E}[x_i]=\mathbb{E}[X]=\mu

2)对估计的均值\hat{\sigma}^2进行评估:

首先对\hat{\sigma}^2的式子进行进一步的推导:

\begin{aligned} \hat{\sigma}^2&=\frac{N}{N-1}\frac{1}{N} \sum_{i=1}^N\left(x_i-\hat{\mu}\right)^2 \\ & =\frac{N}{N-1}\frac{1}{N} \sum_{i=1}^N\left(x_i-\frac{1}{N} \sum_{i=1}^N\left(x_i\right)\right)^2 \\ & =\frac{N}{N-1}\frac{1}{N} \sum_{i=1}^N\left[x_i^2-2 x_i \frac{1}{N} \sum_{i=1}^N\left(x_i\right)+\left(\frac{1}{N} \sum_{i=1}^N\left(x_i\right)\right)^2\right] \\ & =\frac{N}{N-1}\left(\frac{\sum_{i=1}^N x_i^2}{N}-\frac{2 \sum_{i=1}^N x_i \sum_{i=1}^N x_i}{N^2}+\left(\frac{\sum_{i=1}^N x_i}{N}\right)^2 \right ) \\ & =\frac{N}{N-1}\left(\frac{\sum_{i=1}^N x_i^2}{N}-2\left(\frac{\sum_{i=1}^N x_i}{N}\right)^2+\left(\frac{\sum_{i=1}^N x_i}{N}\right)^2 \right ) \\ & =\frac{N}{N-1}\left(\frac{\sum_{i=1}^N x_i^2}{N}-\left(\frac{\sum_{i=1}^N x_i}{N}\right)^2 \right ) \end{aligned}

进行评估: 

\begin{aligned} \mathbb{E}[\hat{\sigma}^2] & =\mathbb{E}\left[\frac{N}{N-1}\left(\frac{\sum_{i=1}^N x_i^2}{N}-\left(\frac{\sum_{i=1}^N x_i}{N}\right)^2 \right )\right] \\ & =\frac{N}{N-1}\left(\frac{\sum_{i=1}^N \mathbb{E}\left[x_i^2\right]}{N}-\frac{\mathbb{E}\left[\left(\sum_{i=1}^N x_i\right)^2\right]}{N^2} \right ) \\ & =\frac{N}{N-1}\left(\mathbb{E}\left[X^2\right]-\frac{\mathbb{E}\left[\left(\sum_{i=1}^N x_i\right)^2\right]}{N^2} \right ) \\ & =\frac{N}{N-1}\left(\mathbb{E}\left[X^2\right]-\frac{\mathbb{E}\left[\sum_{i=1}^N x_i^2+\sum_i^N \sum_{j \neq i}^N x_i x_j\right]}{N^2} \right ) \\ & =\frac{N}{N-1}\left(\mathbb{E}\left[X^2\right]-\frac{\mathbb{E}\left[N\left(\mathbb{E}\left[x_i^2\right]\right)+\sum_i^N \sum_{j \neq i}^N x_i x_j\right]}{N^2} \right ) \\ & =\frac{N}{N-1}\left(\mathbb{E}\left[X^2\right]-\frac{N\left(\mathbb{E}\left[X^2\right]\right)+\sum_i^N \sum_{j \neq i}^N \mathbb{E}\left[x_i\right] \mathbb{E}\left[x_j\right]}{N^2} \right ) \\ & =\frac{N}{N-1}\left(\mathbb{E}\left[X^2\right]-\frac{N\left(\mathbb{E}\left[X^2\right]\right)+N(N-1) \mathbb{E}\left[X\right]^2}{N^2} \right ) \\ & =\frac{N}{N-1}\left(\mathbb{E}\left[X^2\right]-\frac{\mathbb{E}\left[X^2\right]+(N-1) \mathbb{E}\left[X\right]^2}{N} \right )\\ & =\frac{N}{N-1}\left(\frac{N-1}{N}\left(\mathbb{E}\left[X^2\right]-\mathbb{E}\left[X\right]^2 \right ) \right ) \\ &=\sigma^2\end{aligned}

值得注意的是,推导过程中用到了三个性质:

\mathbb{E}[x_i]=\mathbb{E}[X]=\mu

\mathbb{E}[x_i^2]=\mathbb{E}[X^2]

当随机变量x_ix_j相互独立时,\mathbb{E}(x_ix_j)=\mathbb{E}(x_i)\mathbb{E}(x_j)

此时,样本估计的均值和方差\hat{\mu}\hat{\sigma}^2是真实均值和方差\mu\sigma^2的无偏估计

(3)注意:如果想得到无偏估计,则:

\mathbb{E}[\hat{\sigma}^2] =\sigma^2

\mathbb{E}[\hat{\mu}] =\mu

参考

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值