【学习笔记】傅里叶变换: 方形函数,三角函数

方形函数:

方形函数图像
F ( ω ) = ∫ − t 0 t 0 A ⋅ e − j ω t d t F\left( \omega \right) =\int ^{t_{0}}_{-t_{0}}A\cdot e^{-j\omega t}{dt} F(ω)=t0t0Aejωtdt
= A j ω ( e j ω t 0 − e − j ω t 0 ) =\dfrac {A}{j\omega }\left( e^{j\omega t_{0}}-e^{-j\omega t_{0}}\right) =jωA(ejωt0ejωt0)
= A j ω ⋅ 2 j sin ⁡ ω t 0 =\dfrac {A}{j\omega }\cdot 2j\sin \omega t_{0} =jωA2jsinωt0
= A ⋅ 2 t 0 sin ⁡ ω t 0 ω t 0 =A\cdot \dfrac {2t_{0}\sin \omega t_{0}}{\omega t_{0}} =Aωt02t0sinωt0
= 2 A t 0 ⋅ S a ( ω t 0 ) =2At_{0}\cdot S_{a}\left( \omega t_{0}\right) =2At0Sa(ωt0)
即: A [ u ( t + t 0 ) − u ( t − t 0 ) ] ⇔ 2 A t 0 S a ( ω t 0 ) \begin{aligned}A\left[ u\left( t+t_{0}\right) -u\left( t-t_{0}\right) \right] \Leftrightarrow 2At_{0}Sa\left( \omega t_{0}\right) \end{aligned} A[u(t+t0)u(tt0)]2At0Sa(ωt0)

**

三角函数:

**
三角函数图像
先特殊化:令 t 0 t_{0} t0=1,A=1;
则: F ( ω ) = ∫ − 1 0 ( 1 + t ) e − j ω t d t + ∫ 0 1 ( 1 − t ) e − j ω t d t F\left( \omega \right) =\int ^{0}_{-1}\left( 1+t\right) e^{-j\omega t}dt+\int ^{1}_{0}\left( 1-t\right) e^{-j\omega t}dt F(ω)=10(1+t)ejωtdt+01(1t)ejωtdt
分部积分:
= [ ( 1 + t ) ⋅ e − j ω t − j ω ‾ ] − 1 0 + ∫ − 1 0 e − j ω t j ω d t + [ ( 1 − t ) ⋅ e − j ω t − j ω ‾ ] 0 1 + ∫ 0 1 e − j ω t j ω d ( 1 − t ) =\begin{bmatrix} \left( 1+t\right) \cdot e^{-j\omega t} \\ \overline {-j\omega } \end{bmatrix}^{0}_{-1}+\int ^{0}_{-1}\dfrac {e^{-j\omega t}}{j\omega }dt+\begin{bmatrix} \left( 1-t\right) \cdot e^{-j\omega t} \\ \overline {-j\omega } \end{bmatrix}^{1}_{0}+\int ^{1}_{0}\dfrac {e^{-j\omega t}}{j\omega }d\left( 1-t\right) =[(1+t)ejωtjω]10+10jωejωtdt+[(1t)ejωtjω]01+01jωejωtd(1t)
= 1 − j ω + 1 − e j ω ω 2 + 1 j ω + 1 − e − j ω ω 2 =\dfrac {1}{-j\omega }+\dfrac {1-e^{j\omega }}{\omega ^{2}}+\dfrac {1}{j\omega }+\dfrac {1-e^{-j\omega }}{\omega ^{2}} =jω1+ω21ejω+jω1+ω21ejω
= 2 − e j ω − e − j ω ω 2 =\dfrac {2-e^{j\omega }-e^{-j\omega }}{\omega ^{2}} =ω22ejωejω
又因为: cos ⁡ w = 1 − 2 s i n 2 ω 2 \cos w=1-2sin^{2}\dfrac {\omega }{2} cosw=12sin22ω

所以化简得: F ( ω ) = S a 2 ω 2 F\left( \omega \right) =Sa^{2}\dfrac {\omega }{2} F(ω)=Sa22ω

同理,一般化可得: F ( ω ) = A t 0 S a 2 ω t 0 2 F\left( \omega \right) =At_{0}Sa^{2}\dfrac {\omega t_{0}}{2} F(ω)=At0Sa22ωt0

  • 12
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
傅立叶变换和复变函数是数学中非常重要的两个概念,可以应用于信号处理、图像处理、电路分析等领域。下面是一个关于傅立叶变换和复变函数的课程设计,希望能对您有所帮助。 课程设计题目:傅立叶变换和复变函数的应用 一、设计目的 通过本次设计,学生能够了解并掌握傅立叶变换和复变函数的基本概念、性质和应用,培养学生的分析问题和解决问题的能力。 二、设计内容和要求 1. 傅立叶变换的基本概念、性质和应用 - 傅立叶级数 - 傅立叶变换 - 傅立叶反变换 - 傅立叶变换的性质 - 傅立叶变换的应用(例如信号处理、图像处理等) 2. 复变函数的基本概念、性质和应用 - 复数和复平面 - 复变函数的定义 - 复变函数的导数和积分 - 解析函数和调和函数 - 应用(例如电路分析、流体力学等) 3. 综合应用 - 利用傅立叶变换和复变函数解决实际问题,例如信号处理、图像处理、电路分析等。 设计要求: 1. 设计时要注意从基本概念出发,逐步引入性质和应用。 2. 注重实例分析,突出傅立叶变换和复变函数在实际问题中的应用。 3. 要求学生掌握傅立叶变换和复变函数的基本概念、性质和应用,并能够独立解决实际问题。 三、设计步骤 1. 学生学习傅立叶变换和复变函数的基本概念、性质和应用。 2. 学生通过课堂练习、作业等方式掌握相关知识。 3. 学生分组完成一个综合应用的课程设计,包括问题分析、解决方案设计、计算结果和结论分析等环节。 4. 学生进行课堂汇报,讨论和总结。 四、评分标准 1. 设计内容是否全面、准确、深入。 2. 分析问题和解决问题的能力是否得到提升。 3. 解决实际问题的能力是否得到提升。 4. 课堂汇报表现和讨论质量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值