傅里叶变换的简单介绍(Fourier Transform, FT)

定理1 组成三角级数的函数系

        1, cos x, sin x, cos 2x, sin 2x, ..., cos nx, sin nx, ...在[-Π,Π]上正交,即其中任意两个不同的函数之积在[-Π,Π]上的积分为0。

定理2 设f(x)是周期为2Π的周期函数,且

右端级数可逐项积分,则

定理3 (收敛定理,展开定理)设f(x)是周期为2Π的周期函数,并满足狄利克雷( Dirichlet )条件:

        (1)在一个周期内连续或只有有限个第一类间断点;

        (2)在一个周期内只有有限个极值点

则f(x)的傅里叶级数收敛,且有

其中a_{n},b_{n}为f(x)的傅里叶系数 

一、傅里叶级数(Fourier Series)

1.1 三角函数形式的傅里叶级数

1.1.1 三角函数集

        三角函数集 {1, 𝑐𝑜𝑠𝑥, 𝑠𝑖𝑛𝑥, 𝑐𝑜𝑠2𝑥, 𝑠𝑖𝑛2𝑥, … … , 𝑐𝑜𝑠𝑛𝑥, 𝑠𝑖𝑛𝑛𝑥 }, (𝑛 = 1,2,3 … … , ∞), 内的函数在区间[−𝜋, 𝜋] 上彼此正交。

1.1.2 级数形式

周期信号 f (t),周期为T,基波角频率为ω = 2Π / T

在满足狄利克雷条件时,可展成

称为三角形式的傅里叶级数,其系数

1.2 指数函数形式的傅里叶级数

1.2.1 复指数正交函数集

 1.2.2 级数形式

1.2.3 系数 利用复变函数的正交特性

 周期信号f(t)的傅里叶级数有两种形式

① 三角形式

② 指数形式

 二、傅里叶变换

 2.1 直角坐标系内的二维傅里叶变换

        二元函数f(x,y)的傅里叶变换(即傅里叶谱或频谱)定义为

        其傅里叶逆变换定义为

 

         非周期函数可分解为连续频率的余弦分量的积分,F(\zeta ,\eta)是各频率成分的权重因子(weighting factor)。

 2.2 极坐标系内的二维傅里叶变换

2.2.1 定义式

2.2.2  傅里叶-贝塞尔变换

        式中J_{0}是第一类零阶贝塞尔函数(is a Bessel function of first kind, zero order),与\varphi无关,表明圆对称函数的傅里叶变换和逆变换仍为圆对称。

三、广义傅里叶变换

 3.1 极限意义下的傅里叶变换

如果f(x)和一个函数序列f_{n}(x)具有以下关系

而且函数序列中的每一个函数f_{n}(x),其狭义傅里叶变换

存在,且在n趋于无穷时,函数序列^{F_{n}}\zeta)也有确定的极限,则定义

3.2 \delta函数的傅里叶变换 

 即\delta(x)的傅里叶变换是常数1

且常数1的傅里叶逆变换等于\delta(x),因此存在

类似的还有

四、常用的傅里叶变换对 

 

 

 

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薰衣草2333

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值