定理1 组成三角级数的函数系
1, cos x, sin x, cos 2x, sin 2x, ..., cos nx, sin nx, ...在[-Π,Π]上正交,即其中任意两个不同的函数之积在[-Π,Π]上的积分为0。
定理2 设f(x)是周期为2Π的周期函数,且
右端级数可逐项积分,则
定理3 (收敛定理,展开定理)设f(x)是周期为2Π的周期函数,并满足狄利克雷( Dirichlet )条件:
(1)在一个周期内连续或只有有限个第一类间断点;
(2)在一个周期内只有有限个极值点
则f(x)的傅里叶级数收敛,且有
其中,
为f(x)的傅里叶系数
一、傅里叶级数(Fourier Series)
1.1 三角函数形式的傅里叶级数
1.1.1 三角函数集
三角函数集 {1, 𝑐𝑜𝑠𝑥, 𝑠𝑖𝑛𝑥, 𝑐𝑜𝑠2𝑥, 𝑠𝑖𝑛2𝑥, … … , 𝑐𝑜𝑠𝑛𝑥, 𝑠𝑖𝑛𝑛𝑥 }, (𝑛 = 1,2,3 … … , ∞), 内的函数在区间[−𝜋, 𝜋] 上彼此正交。
1.1.2 级数形式
周期信号 f (t),周期为T,基波角频率为ω = 2Π / T
在满足狄利克雷条件时,可展成
称为三角形式的傅里叶级数,其系数
1.2 指数函数形式的傅里叶级数
1.2.1 复指数正交函数集
1.2.2 级数形式
1.2.3 系数 利用复变函数的正交特性
周期信号f(t)的傅里叶级数有两种形式
① 三角形式
② 指数形式
二、傅里叶变换
2.1 直角坐标系内的二维傅里叶变换
二元函数f(x,y)的傅里叶变换(即傅里叶谱或频谱)定义为
其傅里叶逆变换定义为
非周期函数可分解为连续频率的余弦分量的积分,F()是各频率成分的权重因子(weighting factor)。
2.2 极坐标系内的二维傅里叶变换
2.2.1 定义式
2.2.2 傅里叶-贝塞尔变换
式中是第一类零阶贝塞尔函数(is a Bessel function of first kind, zero order),与
无关,表明圆对称函数的傅里叶变换和逆变换仍为圆对称。
三、广义傅里叶变换
3.1 极限意义下的傅里叶变换
如果f(x)和一个函数序列(x)具有以下关系
而且函数序列中的每一个函数(x),其狭义傅里叶变换
存在,且在n趋于无穷时,函数序列(
)也有确定的极限,则定义
3.2
函数的傅里叶变换
即(x)的傅里叶变换是常数1
且常数1的傅里叶逆变换等于(x),因此存在
类似的还有
四、常用的傅里叶变换对