算法效率
算法的效率,一般是形容一个算法的好坏
例如对于费波纳
long long Fib(int N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
这个算法看起来十分简洁,但是它的效率是很差劲的,算50以上就会算算很久,那么它的效率就很差,效率的好坏不能只是看代码是否简洁。
算法的复杂度
算法的复杂度就是用来衡量一个算法的效率,一般由两个指标构成,时间复杂度和空间房租啊都。时间复杂度在乎算法的运行快慢,空间复杂度衡量一个算法运行时所需要的额外空间大小。在早期的时候,计算机存储和内存都很小,需要在乎空间复杂度,但是现在计算机的内存都很大,那么也就不在那么在乎空间复杂度了。
时间复杂度
概念
时间复杂度是一个函数,它用于定量描述一个算法的运行时间,一个算法所消耗的时间是不可以算出来的,只有放到机器上才能得知,但是很麻烦。时间复杂度是一个分析方法 ,用于分析一个算法的运行相对时间,一个算法的时间与其中的语句执行次数成正比例,算法中基本操作执行次数,就是算法的时间复杂度。
例如以下算法
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n",count);
}
Func1的执行次数是 N^2 + 2* N + 10
那么它的时间复杂度就是O(N ^ 2)
大O的渐进表示法
大O是用于描述函数渐进行为的数学符号。
可以认为它和最大项的次方有关
比如 Func1 的最大项是 N^2 那么就是 O(N^2);
如果Func1 是 2 * N 那么就是 O(N)
如果是 常数 那么就是 O(1)
这里的理解方式是 大O去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数;
而且算法中也有时间复杂度存在最好、平均、最坏的情况:
最坏情况,任意输入规模的最大运行次数
平均:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数
我们一般关注最坏的情况。
空间复杂度
空间复杂度是用来衡量一个算法占用的额外的空间的大小。这个与时间复杂度类似,也用大O渐进表示法。
注意的是:函数运行时所占用的栈空间(存储参数,局部变量,一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时额外申请的空间来确定。
例如
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if(n==0)
return NULL;
long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if(N == 0)
return 1;
return Fac(N-1)*N;
}
它们三个的空间复杂度分别是 O(1) O(N) O(N)
常见的复杂度
1234 | O(1) | 常数阶 |
3N | O(n) | 线性阶 |
N^2 + 5 | O(n^2) | 平方阶 |
log(2n)+5 | O(logn) | 对数阶 |
2n + 3nlog(2n) | O(nlogn) | nlogn阶 |
n^3 + n^2 | O(n^3) | 立方阶 |
2^n | O(2^n) | 指数阶 |