BZOJ 2653 middle 主席树

题目描述 Description
一个长度为 n n 的序列a,设其排过序之后为 b b ,其中位数定义为b[n/2],其中 a,b a , b 0 0 开始标号,除法取下整.
给你一个长度为n的序列 s s .
回答Q个这样的询问: s s 的左端点在[a,b]之间,右端点在 [c,d] [ c , d ] 之间的子序列中,最大的中位数.
其中 a<b<c<d a < b < c < d .位置也从 0 0 开始标号
我会使用一些方式强制你在线

输入描述 Input Description
第一行序列长度n.接下来 n n 行按顺序给出a中的数
接下来一行 Q Q .然后Q行每行 a,b,c,d a , b , c , d ,我们令上个询问的答案是 x x (如果这是第一个询问则x=0).
令数组 q={(a+x)modn,(b+x)modn,(c+x)modn,(d+x)modn} q = { ( a + x ) mod n , ( b + x ) mod n , ( c + x ) mod n , ( d + x ) mod n }
q q 从小到大排序之后,令真正的要询问d a=q[0],b=q[1],c=q[2],d=q[3] a = q [ 0 ] , b = q [ 1 ] , c = q [ 2 ] , d = q [ 3 ]
输入保证满足条件
第一行所谓“排过序”指的是从小到大排序!

输出描述 Output Description
Q行依次给出询问的答案

样例输入 Sample Input
5
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0

样例输出 Sample Output
271451044
271451044
969056313

数据范围及提示 Data Size & Hint
n<=20000,Q<=25000 n <= 20000 , Q <= 25000

Solution

这是一道很难看出用主席树的主席树
首先如果求中位数的话,一般来说是需要二分答案的
那么我们对于每一个二分出来的答案在序列中将比它小的设为-1,大于等于它的设为1,那么我们只需要区间求和一下就能判断其是否为中位数,若和小于零,那么显然这个数中大于等于它的数多于比它小的数,显然它不是中位数,所以说真正的中位数应该大于它,反之亦然.

但是如果需要多次询问怎么办?
对于每一个二分出来的答案,我们要求的-1,1序列都是相同的.
显然如果我们对于每个答案都建树是会爆炸的
所以上主席树
可以发现排序后修改次数不会超过 n n <script type="math/tex" id="MathJax-Element-96">n</script>次(从全1到全-1)

那么区间是活动的怎么办?
直接将两边的序列看做一个能尽可能多的为中间序列提供答案的子序列(显然越大越好,因为我们要求最大的中位数)
所以利用DP来求左右两端最多能为中间提供多少答案
即求中间序列的总和加上最大右子段和与最大左子段和

这样就愉快的解决了

代码如下:

#include <bits/stdc++.h>
using namespace std;
const int N=20010;
struct T {
    int sum,lsum,rsum,l,r;
    T(){}
    T(int _sum,int _lsum,int _rsum,int _l,int _r) {sum=_sum;lsum=_lsum;rsum=_rsum;l=_l;r=_r;}
}t[N*200];
int cnt;
struct A {int val,id;}a[N];
int n,q,Q[4],ANS;
int root[N];
int read() {
    int ans=0,flag=1;
    char ch=getchar();
    while((ch>'9' || ch<'0') && ch!='-') ch=getchar();
    if(ch=='-') {flag=-1,ch=getchar();}
    while(ch>='0' && ch<='9') {ans=ans*10+ch-'0';ch=getchar();}
    return ans*flag;
}   
void update(int rt) {
    t[rt].sum=t[t[rt].l].sum+t[t[rt].r].sum;
    t[rt].lsum=max(t[t[rt].l].lsum,t[t[rt].l].sum+t[t[rt].r].lsum);
    t[rt].rsum=max(t[t[rt].r].rsum,t[t[rt].r].sum+t[t[rt].l].rsum);
}
void build(int &rt,int l,int r) {
    rt=++cnt;
    if(l==r) {t[rt].sum=t[rt].lsum=t[rt].rsum=1;return;}
    int m=(l+r)>>1;
    build(t[rt].l,l,m);
    build(t[rt].r,m+1,r);
    update(rt);
}
void insert(int &rt,int pos,int l,int r) {
    t[++cnt]=T(t[rt].sum,t[rt].lsum,t[rt].rsum,t[rt].l,t[rt].r);
    rt=cnt;
    if(l==r) {
        t[rt].sum=t[rt].lsum=t[rt].rsum=-1;
        t[rt].l=t[rt].r=0;
        return;
    }
    int m=(l+r)>>1;
    if(pos<=m) insert(t[rt].l,pos,l,m);
    else insert(t[rt].r,pos,m+1,r);
    update(rt);
}
int query_s(int rt,int l,int r,int L,int R) {
    if(L>R) return 0;
    if(L<=l && r<=R) return t[rt].sum;
    int m=(l+r)>>1,ans=0;
    if(L<=m) ans+=query_s(t[rt].l,l,m,L,R);
    if(R>=m+1) ans+=query_s(t[rt].r,m+1,r,L,R);
    return ans;
}
int query_l(int rt,int l,int r,int L,int R) {
    if(L>R) return 0;
    if(L==l && r==R) return t[rt].lsum;
    int m=(l+r)>>1;
    if(R<=m) return query_l(t[rt].l,l,m,L,R);
    if(L>m) return query_l(t[rt].r,m+1,r,L,R);
    return max(query_l(t[rt].l,l,m,L,m),query_s(t[rt].l,l,m,L,m)+query_l(t[rt].r,m+1,r,m+1,R)); 
}
int query_r(int rt,int l,int r,int L,int R) {
    if(L>R) return 0;
    if(L==l && r==R) return t[rt].rsum;
    int m=(l+r)>>1;
    if(R<=m) return query_r(t[rt].l,l,m,L,R);
    if(L>m) return query_r(t[rt].r,m+1,r,L,R);
    return max(query_r(t[rt].r,m+1,r,m+1,R),query_s(t[rt].r,m+1,r,m+1,R)+query_r(t[rt].l,l,m,L,m));
}
bool check(int m) {
    return query_s(root[m],1,n,Q[1],Q[2])+max(query_r(root[m],1,n,Q[0],Q[1]-1),0)+max(query_l(root[m],1,n,Q[2]+1,Q[3]),0)>=0;
}
bool cmp(A a,A b) {return a.val<b.val;}
int main() {
    n=read();
    for(int i=1;i<=n;i++) {a[i].val=read();a[i].id=i;}
    stable_sort(a+1,a+n+1,cmp);
    build(root[1],1,n);
    for(int i=2;i<=n;i++) {
        root[i]=root[i-1];
        insert(root[i],a[i-1].id,1,n);
    }
    q=read();
    while(q--) {
        Q[0]=read();Q[1]=read();Q[2]=read();Q[3]=read();
        Q[0]=(Q[0]+ANS)%n+1;Q[1]=(Q[1]+ANS)%n+1;
        Q[2]=(Q[2]+ANS)%n+1;Q[3]=(Q[3]+ANS)%n+1;
        sort(Q,Q+4);
        int l=1,r=n,m;
        while(l<=r) {
            m=(l+r)>>1;
            if(check(m)) {ANS=m;l=m+1;}
            else r=m-1;
        }
        ANS=a[ANS].val;
        printf("%d\n",ANS);
    }
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值