
数据与智能
文章平均质量分 75
数据与智能栏目专注于人工智能、机器学习以及数据存储技术的发展与应用。通过我们的深入分析和案例研究,你将了解如何利用这些强大的工具来挖掘数据的价值,实现智能化决策。无论是学术研究还是工业应用,这里都有你需要的知识和灵感。
平凡而伟大.
内容分享
展开
-
MySQL架构设计谈:从开发规范、选型、拆分到减压(转)
作者介绍李辉,原新浪爱彩票运维负责人,常用网名:门牙没了。曾主导新浪爱彩票的MySQL运维工作。培训合伙人、资深讲师,中国科学院大学在读研究生(大数据方向),擅长大型项目的关系型数据库运维和管理,现在在数据库运维自动化方向研究。随着MySQL自身的发展与不断完善,不知不觉中整个互联网行业已离不开这个完善又小巧的关系型数据库,整个生态链也已经变得非常成熟,即便是初创企业和传统企业也可以...转载 2019-11-27 21:54:11 · 208 阅读 · 0 评论 -
MySQL数据库脚本转化成sqlite数据库脚本的修改点
如果SQL文件中使用了MySQL特有的函数或特性,需要查找SQLite中的等效函数或特性,并进行替换。原创 2024-09-24 09:25:20 · 455 阅读 · 0 评论 -
详谈SSD硬盘接口: SATA、mSATA 、PCIe、M.2和U.2
SSD固态硬盘,彻底打破了温彻斯特结构的机械硬盘多年来在电脑硬件领域的统治。SSD数倍于HDD机械硬盘的传输性能,让普通用户和发烧玩家的体验均成倍提升。 在这场存储革命中,为了实现更快的速度、更多的使用环境、更好的体验,SSD的接口也在不断进化革新,像主流的SSD就有SATA接口、M.2接口、U.2接口、PCIe接口和mSATA接口(目前很多SSD也在用SAS接口)等,那么,下面笔者就重点介绍下这四种常见的接口。SATA接口 作为目前应用最多...原创 2021-05-29 12:36:21 · 17679 阅读 · 0 评论 -
机器学习:让计算机学会思考的艺术
在当今数字化时代,机器学习(Machine Learning, ML)已经成为一个炙手可热的话题。从推荐系统到自动驾驶汽车,再到语音助手,机器学习的应用无处不在。然而,对于许多人来说,机器学习仍然是一个神秘而复杂的领域。本文将用通俗易懂的语言,带你走进机器学习的世界,了解它的基本原理和应用。原创 2025-03-19 16:23:57 · 828 阅读 · 0 评论 -
机器学习中的 K-均值聚类算法及其优缺点
K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本分成 K 个簇。其基本原理是将所有样本点划分到 K 个簇使得簇内样本点之间的距离尽可能接近,而不同簇之间的距离尽可能远。原创 2025-03-19 16:10:41 · 315 阅读 · 0 评论 -
OpenCV、OpenCL、OpenGL、OpenMP的区别
OpenCV OpenCV的全称是:Open Source Computer Vision Library。OpenCV是一个开源发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。 OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口。该...原创 2021-05-26 20:47:45 · 1323 阅读 · 1 评论 -
Modbus RTU(Remote Terminal Unit)详解
通过以上示例,你可以了解 Modbus RTU 协议的基本概念、数据帧格式、CRC 校验计算以及如何使用 C# 进行简单的 Modbus RTU 通信。希望这些信息能帮助你更好地理解和使用 Modbus RTU 协议。如果有更多具体的问题或需求,欢迎进一步讨论。原创 2024-11-14 16:20:25 · 563 阅读 · 0 评论 -
深度学习你知道该从哪里入手吗,如何循序渐进看完你就知道。
1 开源框架总览现如今开源生态非常完善,深度学习相关的开源框架众多,光是为人熟知的就有caffe,tensorflow,pytorch/caffe2,keras,mxnet,paddldpaddle,theano,cntk,deeplearning4j,matconvnet等。如何选择最适合你的开源框架是一个问题。有三AI在前段时间里,给大家整理了12个深度学习开源框架快速入门的教程和代码,供初学者进行挑选,一个合格的深度学习算法工程师怎么着得熟悉其中的3个以上吧。下面是各大开源框架的一个总览。原创 2020-07-31 21:26:20 · 382 阅读 · 0 评论 -
大家都能看明白的机器学习介绍
机器学习虽然听起来很高深,但其实质就是一种让计算机通过数据自我学习的方法。通过选择合适的算法和技术手段,我们可以构建出强大的预测模型,从而解决现实世界中的诸多挑战。希望这篇介绍能帮助您对机器学习有一个初步的理解。原创 2025-01-23 16:25:05 · 781 阅读 · 0 评论 -
OPC UA、MQTT 和 HTTP性能分析及使用场景推荐
在选择适合的服务性能协议时,OPC UA、MQTT 和 HTTP 每种都有其独特的优势和适用场景,因此最佳选择取决于具体的应用需求和技术环境。原创 2024-12-17 14:27:05 · 818 阅读 · 0 评论 -
一文讲清楚自我学习和深度学习
自我学习(Self-Learning)和深度学习(Deep Learning)是两个不同的概念,但它们在某些应用场景中可以有交集。下面我们将分别介绍这两个概念,并探讨如何将它们结合起来用于自我学习系统。原创 2025-03-04 14:27:54 · 580 阅读 · 0 评论 -
一文讲清楚CUDA与PyTorch、GPU之间的关系
GPU:一个超级快的数学计算器。- CUDA:一个让程序员能更容易使用GPU的工具。- Pytorch:一个帮助创建和训练深度学习模型的工具。当PyTorch需要加速计算时,它通过CUDA来利用GPU的计算能力。原创 2025-03-13 08:55:24 · 1580 阅读 · 0 评论 -
机器学习的发展史
当前,机器学习正在向着更加自动化、通用化和高效化的方向发展。自动机器学习(AutoML)、联邦学习、可解释性AI等领域正成为新的研究热点。此外,随着量子计算等新兴技术的发展,未来的机器学习可能会迎来更多变革性的突破。原创 2025-03-08 10:05:59 · 939 阅读 · 0 评论 -
TensorFlow 的基本概念和使用场景
TensorFlow 是一个由 Google 开发的开源机器学习框架,主要用于构建和训练深度学习模型。原创 2025-03-19 16:12:52 · 369 阅读 · 0 评论 -
深度学习硬件:CPU、GPU、FPGA、ASIC
人工智能包括三个要素:算法,计算和数据。人工智能算法目前最主流的是深度学习。计算所对应的硬件平台有:CPU、GPU、FPGA、ASIC。由于移动互联网的到来,用户每天产生大量的数据被入口应用收集:搜索、通讯。我们的QQ、微信业务,用户每天产生的图片数量都是数亿级别,如果我们把这些用户产生的数据看成矿藏的话,计算所对应的硬件平台看成挖掘机,挖掘机的挖掘效率就是各个计算硬件平台对比的标准。最初深度学习算法的主要计算平台是 CPU,因为 CPU 通用性好,硬件框架已经很成熟,对于程序员来说非常友好。然而,原创 2021-06-24 15:32:32 · 1719 阅读 · 0 评论 -
一文讲清楚深度学习和机器学习
机器学习和深度学习都是为了使计算机能够从数据中学习和做出决策,但深度学习凭借其独特的架构和算法,在处理大规模复杂数据方面展现出了巨大的优势。然而,这并不意味着机器学习就会被淘汰;相反,两者各有优劣,适用于不同类型的问题和场景。随着技术的发展,我们预计这两个领域将继续相互促进,共同推动人工智能的进步。原创 2025-01-23 16:38:53 · 808 阅读 · 0 评论 -
人工智能,机器学习,深度学习的概述
人工智能最大,此概念也最先问世;然后是机器学习,出现的稍晚;最后才是深度学习。下面分别介绍一下人工智能、机器学习、深度学习的概述与应用领域。人工智能的根本在于智能,而机器学习则是部署支持人工智能的计算方法。简单的将,人工智能是科学,机器学习是让机器变得更加智能的算法,机器学习在某种程度上成就了人工智能。原创 2020-12-10 11:35:55 · 1851 阅读 · 0 评论 -
TensorFlow 、Caffe等9大主流人工智能框架优劣势分析
从机器人到谷歌Siri,再到现在新推出的谷歌双工系统,人工智能似乎已经取得了相当大的进步,变得越来越人性化。对机器学习和人工智能的需求呈指数级增长,相关社区也因此增加,促进了一些AI框架的发展,这些框架使得学习AI变得更加容易。在本文中,您将了解一些最佳框架,以帮助您开始AI开发。Tensor Flowhttps://www.tensorflow.orgTensor Flow来自谷歌家族,是一个强大的开源框架,支持深度学习,甚至可以通过移动设备访问。Tensor Flow是一个.转载 2020-06-02 10:34:41 · 5179 阅读 · 0 评论 -
机器学习:未来是什么样的?
机器学习(ML)是使计算机能够执行尚未明确要求执行的操作的过程。 因此,机器学习在使有感觉的机器成为现实的过程中扮演着核心角色。 随着汉森(Hanson)机器人公司开发的AI机器人Sophia的推出,我们想知道这些聪明的家伙要比我们有多接近。如果您对未来十年中机器学习的未来进行推测,那么您来对地方了! 我们走吧。现状ML通过引入一种使准系统能够从大型数据集中丰富其知识库,避免编程错误并避免逻辑问题的方式,使准系统的复杂性降低了。 通过在主流应用程序中使用BigData框架,智能算法现在可以处理这个庞原创 2020-06-11 10:27:46 · 882 阅读 · 0 评论 -
自然语言处理(NLP)技术
人工智能(Artificial Intelligence,AI)是一种模拟人类智能思维过程的技术,它在现代科技中的应用非常广泛,涉及诸多领域,如自然语言处理、计算机视觉、机器学习、数据分析等原创 2025-03-19 16:09:32 · 471 阅读 · 0 评论