现代信号处理基础(附MATLAB代码)

目录

一. 谐波过程

二. 白噪声序列

2.1 白噪声

2.2 带限白噪声

三. 高斯正太随机信号

四. 稳定系统与因果系统

4.1 稳定系统

4.2 因果系统

五.  自相关和自协方差函数

六. 基于MATLAB的滤波器


一. 谐波过程

谐波过程可以描述为如下:

x(n)=\sum_{i=1}^N A_icos(\omega_in+\theta_i),\quad i=1,2,\cdots,n

上式子中的A_i\omega_i是常数,\theta_i是彼此独立且服从均匀分布的随机变量,其概率密度定义如下:

P(\theta_i)=\frac{1}{2\pi}\quad -\pi<\theta_i\leq \pi

均值定义如下:

E[x(n)]=\int_{-\infty}^\infty x(n)p(\theta_i)d\theta_i

进一步化简可得:

E[x(n)]=\sum_{i=1}^N A_i\int_{-\pi}^\pi cos(\omega_in+\theta_i)\frac{1}{2\pi}d\theta_i=0

谐波过程是具有零均值的平稳过程,此可以由其自相关函数解释,如下:

谐波的方差可计算如下:

\sigma^2_x=r_{xx}(0)=\sum_{i=1}^N \frac{A_i^2}{2}

谐波的功率谱可得:

二. 白噪声序列

2.1 白噪声

若随机信号序列x(n)的随机变量是两两互不相关的,则称该序列为白噪声序列,如下:

如果定义中,\sigma_{x_n}^2为常数,则该白噪声序列是平稳的,如下:

cov(x_n,x_m)=\sigma^2\delta_{nm}

如果均值m_x=0,那么平稳白噪声序列具有如下性质:

r_{xx}(m)=\sigma^2\delta(m),\quad P_{xx}(e^{j\omega})=\sigma^2

2.2 带限白噪声

白噪声是一种理想信号,在实际中是不存在的。在工程中,只要信号功率谱在某个有限频带内基本恒定,且带宽大于系统带宽时,则称为有限白噪声。此时可得:

P_{xx}(e^{j\omega})=\sigma^2 \quad |\omega|\leq W

r_{xx}(m)=\sigma^2\frac{sin Wm}{\pi m}

如果白噪声是带通的,那么中心频率在\pm \omega_0,带宽时B,可得:

P_{xx}(e^{j\omega})=\sigma^2 \quad \omega_0-\frac{B}{2}\leq |\omega|\leq \omega_0+\frac{B}{2}

根据傅氏变换频移定理可得其相关函数为:

r_{xx}(m)=2\sigma^2\frac{sin\frac{Bm}{2}}{\pi m}cos\omega_0m

一般从两个角度研究相位噪声的模型:一是根据振荡器中信号相位噪声产生的机理,分析各种影响相位噪声的因素及其关系,以建立振荡器信号相位噪声的特征和数学模型;二是根据振荡器信号的相位噪声测量结果,分析其相位噪声曲线与频率之间的函数特征,以建立振荡器信号相位噪声的数学模型。

三. 高斯正太随机信号

定义X和M如下:

X=[x_1,x_2,\cdots,x_N]\quad M=[m_1,m_2,\cdots,m_N]

那么正态随机信号x(n)的N维联合概率密度函数为:

P(x_1,x_2,\cdots,x_N)=\frac{1}{\sqrt{2\pi}|var X|^{\frac{1}{2}}}e^{[-\frac{1}{2}(X-M)^T(varX)^{-1}(X-M)]}

上式子中的varX为X的N维方差矩阵。

具有指数型自相关函数的平稳高斯过程称之为高斯-马尔科夫过程。

高斯-马尔科夫信号的自相关函数定义如下:

R_X(m)=\sigma^2e^{-\beta|m|}

高斯-马尔科夫信号的谱密度函数定义为:

P_{xx}(e^{j\omega})=\frac{2\sigma^2\beta}{\omega^2+\beta^2}

四. 稳定系统与因果系统

4.1 稳定系统

有界输入必导致有界输出的系统称之为稳定系统。

对连续系统有绝对可积分:

\int_{-\infty}^\infty |h(t)|dt<\infty

对离散系统有绝对可求和:

\sum_{k=-\infty}^\infty|h(t)|<\infty

4.2 因果系统

输出必在输入之后称之为因果系统,理解为:

h(t)=0,\forall t<0

且有:

五.  自相关和自协方差函数

利用\tau代表时间差,如下:

\tau=t_1-t_2

可得自相关函数的定义:

R_{xx}(\tau)=E\lbrace x(t)x^*(t-\tau)\rbrace

自协方差函数可得:

C_{xx}(\tau)=E\lbrace [x(t)-\mu_x][x(t-\tau)-\mu_x]^*\rbrace

两者的关系可以表示为:

C_{xx}(\tau)=R_{xx}(\tau)-|\mu_x|^2

对于零均值的变量而言,两者是一样的,如下:

C_{xx}(\tau)=R_{xx}(\tau)

满足对称性:

四个极限值:

最大值相关:

 

六. 基于MATLAB的滤波器

(1)脉冲响应不变法设计数字 ButterWorth 滤波器

在MATLAB中调用格式:[bz,az]=impinvar(b,a,Fs)

在给定模拟滤波器参数 b,a 和取样频率 Fs 的前提下,计算数字滤波器的参数。两者的冲激响应不变,即模拟滤波器的冲激响应按 Fs 取样后等同于数字滤波器的冲激响应。

(2)利用双线性变换法设计数字 ButterWorth 滤波器

在MATLAB中调用格式:调用格式:[bz,az]=bilinear[b,a,Fs]

根据给定的分子 b、分母系数 a 和取样频率 Fs,根据双线性变换将模拟滤波器变换成离散滤波器,具有分子系数向量 bz 和分母系数向量 az。模拟域的 butter 函数说明与数字域的函数说明相同。

[b,a]=butter(n,Wn,’s’)可以得到模拟域的Butterworth 滤波器

来看一个例题:

采样频率为 1Hz,通带临界频率 fp =0.2Hz,通带内衰减小于 1dB(αp=1);阻带临界频率 fs=0.3Hz,阻带内衰减大于 25dB(αs=25)。设计一个数字滤波器满足以上参数。

解:

MATLAB代码如下

clear;
clc;
close all;

%直接设计数字滤波器
[n,Wn]=buttord(0.2,0.3,1,25);
[b,a]=butter(n,Wn); 
freqz(b,a,512,1);
%脉冲响应不变法设计数字滤波器
[n,Wn]=buttord(0.2,0.3,1,25,'s');
[b,a]=butter(n,Wn,'s');
freqs(b,a)
[bz,az]=impinvar(b,a,1); 
freqz(bz,az,512,1)
%双线性变换法设计 ButterWorth 数字滤波器
[n,Wn]=buttord(0.2,0.3,1,25,'s');
[b,a]=butter(n,Wn,'s');
freqs(b,a)
[bz,az]=bilinear(b,a,1); 
freqz(bz,az,512,1) 

运行结果为:

附录MATLAB如何产生窗函数:

(1)矩形窗(Rectangle Window)调用格式:w=boxcar(n),根据长度 n 产生一个矩形窗 w。

(2)三角窗(Triangular Window)调用格式:w=triang(n) ,根据长度 n 产生一个三角窗 w。

(3)汉宁窗(Hanning Window)调用格式:w=hanning(n) ,根据长度 n 产生一个汉宁窗 w。

(4)海明窗(Hamming Window)调用格式:w=hamming(n) ,根据长度 n 产生一个海明窗 w。

(5)布拉克曼窗(Blackman Window)调用格式:w=blackman(n) ,根据长度 n 产生一个布拉克曼窗 w。

(6)恺撒窗(Kaiser Window)调用格式:w=kaiser(n,beta) ,根据长度 n 和影响窗函数旁瓣的β参数产生一个恺撒窗 w。

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唠嗑!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值