格密码的数学基础
文章平均质量分 92
包含矩阵论,概率论,高斯分布等
唠嗑!
一名头还没秃的网络安全博士生,主研究:格密码,MATLAB,零知识证明(IP,PCP,IOP),信息论安全,物理层密码。可私信提供以上领域的辅导
展开
-
【群环域基础】:同态(homomorphism)
令R和S代表两个环(ring),同态可以简单理解成从R到S的某种映射,如下:接下来我将通过几个性质来解释下到底什么叫同态。原创 2024-03-14 15:22:36 · 2205 阅读 · 0 评论 -
【群环域】多项式环基础
令R代表环(Ring),多项式环中x对应的系数则取自于环R,其标准的表达形式如下:假如有另外一个多项式的表达形式如下:如果两个多项式对应的系数均相等,也就是:那么则可以说两个多项式相等,也就是f(x)=g(x)。简单观察下两个多项式的系数,不难发现:以及:在多项式g(x)中,x被称之为不定项(indeterminant),是首项系数(leading coefficient),是常数项(constant term)。原创 2024-03-12 16:08:25 · 1547 阅读 · 0 评论 -
详解矩阵的LDU分解
比如先看第一个方程,Lc=b,我们首先解c1,接着解c2,以此类推,所以这个过程也被称之为正向(forward)求解。一般来讲,矩阵的LU分解与LDU分解往往是不一样的,当然有些地方也会将其称之为LDV分解,只是换个符号而已,本质是一样的。其中,A为任意方阵,L为下三角矩阵且对角线处元素均为1,U为上三角矩阵。总共有两个三角系统,无论是上三角还是下三角矩阵,复杂性是一样的,只不过解的顺序不同而已。在这个例子中,系数矩阵中的元素只有1,-1和0,所以解起来会更加简单,之前解方程的复杂度为。原创 2024-01-26 14:59:41 · 2757 阅读 · 1 评论 -
详解矩阵的三角分解A=LU
总共分成三步,可以把每一步抽象成一种矩阵变换,第一步叫矩阵E,第二步叫矩阵F,第三步叫矩阵G,这些矩阵都可以被称之为初等矩阵(elementary matrix)。首先来看第一步的操作。用第i行减去第j行的l倍,那么相等于在矩阵的(i,j)位置,放上-l.对角线上均为1,其他位置均为0,这就是初等矩阵的规律。在线性代数领域,有三种初等行变换方法,然后将其应用于矩阵求矩阵初等行变换的基础是三种常用的矩阵初等行变换方法。该因子代表第i行减去第j行的主元,接着在第i行对应的位置出现0,则为实际高斯消元法的步骤。原创 2024-01-21 22:56:35 · 2738 阅读 · 0 评论 -
行列式的性质
因此,当阶数 n 很大时,计算量相当大.所以,在计算行列式的值时,往往不用行列式的表达式.而是针对所给的具体行列式的特点,利用行列式的基本性质,将行列式的值求出来.。可以想到,如果对角线处的元素出现了0,那么也就出现了0行向量,那么该矩阵的行列式即为0,也就是所有的奇异矩阵(singular matrices)的行列式均为0。交换该矩阵的行向量位置,其行列式是不变的,布尔代数理论(Boolean algebra)告诉我们是是要改变符号的,能满足该性质的数也只有0了。原创 2024-01-17 23:30:13 · 2108 阅读 · 0 评论 -
矩阵行列式的四大应用
行列式可以反应矩阵的很多性质,比如可以求矩阵的逆,也可以求方程的解,如下:矩阵行列式有三个基础的性质:(1)单位阵单位阵的行列式为1,也就是:det I=1(2) 符号矩阵的行位置交换会影响行列式的符号(3)线性关系矩阵行列式与行向量之间呈现线性关系本文章将梳理矩阵行列式的四个基本应用。原创 2024-01-16 00:23:18 · 1765 阅读 · 0 评论 -
详解矩阵变换:伸缩,旋转,反射和投影
透视变换的转换矩阵也与仿射变换的矩阵不同,是一个 3×3 的矩阵。输入点为(x,y),经过矩阵变换后为(x,0),该点也是在x轴上且距离输入点最近的点。以上变换中的cx+dy中的x和y可以使多项式,可以是矩阵,还可以是函数x(t)和y(t),只要满足如上关系都可以看成线性变换。如果给出的矩阵A是m行n列的,那么就可以从n维向量变换到m维向量,换句话说长方形的矩阵(非方阵)也满足如上线性变换。如果输入分别为x和y,对应的输出为x'和y',那么当输入为求和x+y时,输出也肯定为x'+y'。原创 2024-01-13 22:22:17 · 3875 阅读 · 0 评论 -
详解矩阵的正交化(附例题分析)
单位矩阵,数量矩阵(对角线上元素都是同一个数值),对角矩阵,三对角矩阵(对角线、邻近对角线的上下次对角线上有元素,其他位置均为0的矩阵),上 (下) 三角矩阵,上 Hessenberg 矩阵(当行大于列+1时元素为0),下Hessenberg 矩阵(当列大于行+1时元素为0),带状矩阵(当所有非零元素都集中在以主对角线为中心的带状区域时)我们就可以把向量c分成两个三个分量:垂直q1和q2平面的分量,和q1同方向的分量,和q2同方向的分量。一个是和q1同方向的向量,一个是和q2垂直方向的向量。原创 2024-01-12 00:05:29 · 6747 阅读 · 0 评论 -
对角矩阵,投影矩阵,三角矩阵的特征值性质
特征值为0的矩阵是奇异的,也就不可求逆,行列式为0.换句话说如果矩阵所有的特征值都非0的话,那么该矩阵则可以求逆。需要注意的是,矩阵的特征值,矩阵对角线元素的值,矩阵的主元(pivot),这三者是完全不同的概念。利用特征值的乘积也可以验证投影矩阵为奇异矩阵,行列式为0.反过来,矩阵行列式为0,说明至少存在一个特征值为0。根据经验,三角矩阵(triangular)的特征值就是对角线上的元素。很明显矩阵U的特征值就是其对角线的元素,但是和矩阵A的特征值大小是不一样的。需要注意的是,特征值是可以重复的。原创 2024-01-11 00:11:31 · 2582 阅读 · 0 评论