目录
3.1 选择性合并算法(selection combining)
一. 空间分集(space diversity)
空间分集:也称天线分集,就是采用多根天线来接收信号,然后进行合并。
在接收端实现空间分集最常见有两种:一个叫选择性合并(Selection Combining);另一个就是本文的主题叫最大比合并(Maximal Ratio Combining, MRC)。
其实最大比合并算法可以看成在接收端实现广义的波束赋形(generalized beamforming)。
二. 系统模型
假定某个无线系统有一根发射天线(Tx),两根接收天线(Rx)。发送端发射出数据s。当然这个数据需要进行调制,比如QAM调制(Quadrature Amplitude Modulation)。
来看一个例图。
图中h1和h2代表两个信道。r1和r2代表两个接收天线。w1和w2代表权重(相乘),中间加号代表相加,最后输出z。
我们仅仅考虑一个时隙。
那么很明显第一根天线会收到r1,第二根天线会收到r2。发射天线与第一根天线之间为平坦衰落,信道增益为h1,同理,发射天线与第二根天线之间为平坦衰落,信道增益为h2.
由此接收端Rx会受到两个信号,如下等式:
上式子中h1和h2为信道增益(channel gain),通常会被建模为复数高斯分布。这两个式子均来自于加性高斯白噪声模型。
三. 尝试性译码
3.1 选择性合并算法(selection combining)
选择性合并算法的流程如下:
- 第一步:探测到达每根天线的信号功率
- 第二步:选择信噪比(SNR)最高的天线
- 第三步:译码
从以上步骤可以看出,选择性合并算法抛弃了低信号能量的天线,两根接收天线,实际只利用了一根,这很浪费。
3.2 简单相加
如果把所有天线的信号都加在一起会怎么样?
首先,信道增益h1和h2都服从复高斯分布。如果写成极坐标的形式,那么h1和h2的模长(magnitude)就服从瑞丽分布(Rayleigh)。相位(phase)在0到2π之间服从均匀分布。简单加在一起是没有任何意义的,因为所有的东西包括噪声都被扩大两倍,每个东西都被平均掉了。以刚才的模型为例,则可以得到:
对译码没有任何帮助。
四. 最大比合并算法
4.1 合并信号
我们可以尝试对接收到的信号r1和r2进行线性组合。
首先对r1乘以权重值w1。接着对r2乘以权重值w2。最后相加在一起,可得:
推广到一般化,如果接收天线数是NR根的话,那么合并后的信号可以综合性写为:
备注:以上noise其实也要进行线性合并。
需要注意的是,上面式子中的wi也都是复数。并且在设计算法时要求该复数不会放大噪声。这就需要精心设计该线性组合。
其实这个式子就有点波束赋形的味道了。
4.2 设计权重值w
信道增益h和权重因子w都有两大要素,第一个是模长,第二个是相位。回忆起极坐标的运算,相乘时,模长是直接相乘:
相位是相加:
也就是可以得到:
站在接收者的角度,怎么样设计权重因子对译码更有利呢?
首先,接收者通过信道估计过程(借助训练序列或者周期性的导频符号)可以得到信道增益h的值。该模型需要接收端获得信道状态信息(CSI)。
可以设计权重因子w来抵消相位的偏移。
换句话说,权重因子w的相位恰好与信道增益的相位相反。那么此时,合并后的信号则变为:
很明显,此时式子就简单多了。
抵消相位可以看一个简单的极坐标图:
极坐标,正负角度相加为0。
接下来我们可以考虑权重因子的模长了。
如果不做任何改变,让权重因子的模长就是简单的1,那么这个方案也被称之为相等增益合并算法(equal gain combining)。
很明显,这个方法不是最优的。
我们希望信噪比SNR较优的天线能占比更大一些,也就是给予更多的权重。
怎么实现?
可以让权重因子与信道增益同样模长。也就是:
这个过程可以简单看如下图:
简单总结就是两者互为共轭复数(模长相等,相位互为相反数),也就是:
那么原来的合并信号则可以化简为:
观察这个表达式,这不就是广义的波束赋形嘛!只不过是在接收端实现的。
在信号处理决策中,最大比合并算法是最优的,很好的实现了分集增益效果。
五. 波束赋形
5.1 小结
共轭复数(complex conjugate)是相位相反,模长相等。最优的权重因子wj其实就是信道增益hj的共轭复数,如下:
当然,在实际应用中要实现功率归一化(power normalization),也就是保证系数平方和为1。那么每个因子的前面还要乘以如下标量:
5.2 与波束赋形的关系
物理层波束赋形中也利用了共轭复数的思想。但两者之间还是有细微的区别。
在经典的波束赋形场景中,权重wi的共轭性质是相对于到达波的角度来讲的。以此来保证波束朝着特定的方向传输。
在最大比合并算法中,权重因子wj的共轭性质是根据整个平坦衰落的信道增益hj来选择的。在接收端,这便出现了分集(diversity)的思想。
六. 译码
根据权重因子wj的选择,现在待解调(demodulation)的信号为:
备注:如上图,一根发射天线,两根接收天线
复数乘以其共轭复数即为模的平方。
因为噪声值通常很小,可以暂时忽略。那么最后译码出的信号为:
当然,也可以从图形的方式来理解如何译码一个带噪声的信号。
举一个16-QAM的例子。
图中五角星代表16-QAM中的星座点。蓝色小球代表带噪声的信号。黄色的五角星代表最近的星座点。
因为噪声是服从均值为0的高斯分布。所以,离其最近距离的星座点就是最后解调的信号。
七. 写在最后
内容与图片参考自书籍《Wireless Communications From the Ground Up》。