【图论】—— 最小生成树


最小生成树

给定一张边带权的无向图 \small G=(V,E) ,\small n=\left | V \right |,m=\left | E \right | 。由 V 中全部 n 个顶点和 E 中 n - 1条边构成的 无向连通子图 被称为 G 的一棵生成树。

边的权值之和最小的生成树被称为无向图 \small G 的最小生成树 \small (Minimum Spanning Tree, MST)


定理

任意一颗最小生成树一定包含无向图中权值最小的边

证明:

反证法。假设无向图 \small G=(V,E) 存在一棵最小生成树不含权值最小的边。

设  \small e=(x,y,z) 是无向图中边权最小的边。 把 e 添加到树中,e 会和树上从 x 到 y 的路径一起构成一个环,并且环上其他边的权值都比 z 大。因此,用 e 代替环上的其他任意一条边,会形成一棵权值和更小的生成树,与假设矛盾。故假设不成立,原命题成立。

证毕。

推论: 

给定一张无向图 \small G=(V,E) \small n=\left | V \right |,m=\left | E \right | 。从 E 中选出 \small k<n-1 条边构成 G 的一个生成森林。若再从剩余的  \small m - k 条边中选 \small n - 1 - k 条添加到生成森林中,使其成为 G 的生成树,并且选出的边的权值之和最小,则该生成树一定包含这 \small m - k 条边中连接生成森林的两个不连通节点的权值最小的边。


Kruskal算法 

Kruskal算法就是基于上述推论的。Kruskal算法 总是维护无向图的最小生成森林。
 

最初,可以认为生成森林由 0 条边构成,每个节点格子构成一棵仅包含一个点的树。
 

在任意时刻,Kruskal算法从剩余的边中选出一条权值最小的,并且这条边的两个端点属于生成森林中两棵不同的树(不连通),把该边加入输出森林
 

图中节点的连通情况可以用并查集维护。

算法流程:

  1. 建立并查集,每个点各自构成一个集合
  2. 把所有边按权值从小到大排序,依次扫描每条边 \small (x,y,z) 
  3. 若 x, y 属于同一集合(连通),则忽略这条边,继续扫描下一条
  4. 否则,合并 x, y 所在的集合,并把 z 累加到答案中
  5. 所有边扫描完成后,第 4 步中处理过的边就构成最小生成树

时间复杂度为 \small O(mlogm)


代码实现

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = 2 * N, INF = 0x3f3f3f3f;

int n, m;
int p[N];

struct Edge
{
    int a, b, w;
    
    bool operator< (const Edge &W) const
    {
        return w < W.w;
    }
}edges[M];

int find(int x)
{
    if(p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);
    
    // 初始化并查集
    for(int i = 1; i <= n; i ++ ) p[i] = i;
    
    int res = 0, cnt = 0;
    for(int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;
        
        a = find(a), b = find(b);
        if(a != b)
        {
            p[a] = b;
            res += w;
            cnt ++ ;
        }
    }
    
    if(cnt < n - 1)  return INF;
    return res;
}


int main()
{
    cin >> n >> m;
    
    for(int i = 0; i < m; i ++ )
    {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        edges[i] = {a, b, w};
    }
    
    int t = kruskal();
    
    if(t == INF) puts("impossible");
    else cout << t << endl;
}

例题:洛谷 P1396 营救
 

 

这道题本质上就是kruskal算法的一个应用(用最短路求也可)
将所有的边按照权重进行排序后,从小到大按照kurskal算法的顺序进行连通

当 s 和 t 第一次连通的时候,此时求的的便是这两点间的最短距离(贪心的思想:若存在其其他可连通的路径,其边权之和一定大于等于第一次所连通的边权之和


AC代码 

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = 2 * N, INF = 0x3f3f3f3f;

int n, m, s, t;
int p[N];

struct Edge
{
    int a, b, w;
    
    bool operator< (const Edge &W) const
    {
        return w < W.w;
    }
}edges[M];

int find(int x)
{
    if(p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);
    
    // 初始化并查集
    for(int i = 1; i <= n; i ++ ) p[i] = i;
    
    int res = 0, cnt = 0;
    for(int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;
        
        
        
        a = find(a), b = find(b);
        if(a != b)
        {
            p[a] = b;
            res += w;
            cnt ++ ;
        }
        
        if(find(s) == find(t)) return w;
    }
}


int main()
{
    cin >> n >> m >> s >> t;
    
    for(int i = 0; i < m; i ++ )
    {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        edges[i] = {a, b, w};
    }
    
    int t = kruskal();
    
    cout << t << endl;
    
    return 0;
}
  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玄澈_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值