【数学知识】—— 质数/约数


 质数

若一个正整数无法被1和它自身之外的任何自然数整除,则称该数为质数(或者素数,否则则称该正整数为合数

在整个自然数集合中,质数的数量不是很多,分布比较稀疏,对于一个足够大的整数 N不超过 N 的质数大约有 N/lnN ,即 lnN 个数中大约有 1 个质数

质数的判断 

试除法

若一个正整数 N 为合数,则存在一个能整除 N 的数 T,其中 \small 2\leq T\leq \sqrt{N}

证明:

        由定义可得,N 是合数,所以存在一个能整除 N 的整数 M,其中 \small 2\leq M\leq N-1.

        反证法。假设命题不成立,那么这样的数 M 一点满足 \small \sqrt{N}+1\leq M\leq N-1。因为 M 能整除 N,所以他们的商 N/M 也能整除 N。而 \small 2\leq N/M\leq \sqrt{N},令 T=N/M, 这与假设矛盾。故假设不成立,原命题成立。

证毕 


根据上述命题,我们只需要扫描 \small 2\sim \sqrt{N} 之间的所有整数,依次检查他们能否整除 N,若都不能整除,则 N 是质数,否则 N 是合数。试除法的时间复杂度是 \small O(\sqrt(N))

当然,我们要特判 0 和 1 两个整数,他们既不是质数,也不是合数。


AcWing 866. 试除法判定质数

输入样例:

2
2
6

输出样例:

Yes
No

#include <iostream>
#include <algorithm>

using namespace std;

bool is_prime(int n)
{
    if(n < 2) return false;
    for(int i = 2; i <= n / i; i ++ )
        if(n % i == 0)
             return false;
    return true;
}

int main()
{
    int T; cin >> T;
    while(T -- )
    {
        int x; cin >> x;
        if(is_prime(x)) puts("Yes");
        else puts("No");
    }
    
    return 0;
}

分解质因数——试除法 

算术基本定理

        任何一个大于1的正整数都能分解成有限个质数的乘积,可写作:

N=p_1^{c_1}p_2^{c_2}...p_m^{c_m}

        其中,ci 都是正整数, pi 都是质数,且满足 p_1<p_2<...<p_m


试除法 

        结合质数判定的“试除法”,我们可以扫描 \small 2\sim[\sqrt{N}]  的每个数 d,若 d 能整除 N,则从 N 中除掉所有的因子 d,同时计算累计除去 d 的个数。

        因为一个合数的因子一定在扫描到这个合数之前就从 N 中被除掉了,所以在上述过程中能被整除 N 的一定都是质数。最终就得到了分解质因数的结果,时间复杂度是 \small O(\sqrt{N}) 。

        特别的,如果 N 没有被任何 \small 2\sim[\sqrt{N}] 的数整除,则 N 是质数,无需分解。 


AcWing 867. 分解质因数 

输入样例:

2
6
8

输出样例:

2 1
3 1

2 3

#include <iostream>
#include <algorithm>

using namespace std;

void divide(int n)
{
    for(int i = 2; i <= n / i; i ++ )
        if(n % i == 0)  //i一定是质数
        {
            int s = 0;
            while(n % i == 0)
            {
                n /= i;
                s ++;
            }
            printf("%d %d\n",i,s);
        }
    if(n > 1) printf("%d %d\n",n,1);
    puts("");
}

int main()
{
    int n;
    cin >> n;
    while(n --)
    {
        int x;
        scanf("%d",&x);
        divide(x);
    }
    return 0;
}

埃氏筛(质数) 

埃氏筛是基于这样的想法:任意整数 x 的倍数 2x, 3x, ... 都不是质数,根据质数的定义,上述想法显然成立。时间复杂度是 O(NloglogN)

要得到自然数n以内的全部素数,必须把不大于根号n的所有素数的倍数剔除,剩下的就是素数。

TIP:我们不是去找某个数的素数因子,而是通过素数因子来判断一堆数是不是合数 

优化原因:因为合数的倍数也是素数的倍数,所以我们只需要找到所有的素数来进行排除即可,不用利用所有的数来进行排除。


void get_primes(int n)
{
    for(int i = 2; i <= n; i ++ )
    {
        if(!st[i])
        {
            primes[cnt ++ ] = i;
            for(int j = i + i; j <= n; j += i ) st[j] = true;
        }
    }
}

线性筛 

对于埃氏筛,即使是在优化后,仍然会重复标记合数,例如:12既会被2标记也会被3标记,在标记2的时候,12=6*2;在标记3的时候,12=4*3。

其根本原因是我们没有确定出唯一的产生12的方式。


线性筛法通过“从小到大累计质因子”的方式标记每个合数,即让12只有3*2*2一种产生方式

① i % pj == 0

        pj 一定是 i 的最小质因子,pj 也一定是 pj * i 的最小质因子

② i % pj != 0

        pj 一定小于 i 的所有质因子,pj 也一定是 pj * i 的最小质因子


void get_primes(int n)
{
    for(int i = 2; i <= n; i ++ )
    {
        if(!st[i]) primes[cnt ++ ] = i;
        for(int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if(i % primes[j] == 0) break; // primes[j] 一定是i的最小质因子
        }
    }
}

约数 

        若整数 n 满足除以整数d 的余数为 0, 即 d 能整除 n ,则称 d 是 n 的约数, n 是 d 的倍数,记为 d | n


AcWing 869. 试除法求约数

输入样例:

2
6
8

输出样例:

1 2 3 6 
1 2 4 8 

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

vector<int> get_divisors(int n)
{
    vector<int> res;
    
    for(int i = 1; i <= n / i; i ++ )
        if(n % i == 0)
        {
            res.push_back(i);
            // 特判平方根的条件
            if(i != n / i) res.push_back(n / i);
        }
    sort(res.begin(), res.end());
    return res;
}

int main()
{
    int n; cin >> n;
    while(n -- )
    {
        int x; cin >> x;
        auto res = get_divisors(x);
        for(auto t : res) cout << t << ' ';
        cout << endl;
    }
    return 0;
}


 (约数)算数基本定理的推论

         在算数基本定理中,若正整数 N 被唯一分解为 N=p_1^{c_1}p_2^{c_3}...p_m^{c_m} ,其中,ci 都是正整数, pi 都是质数,且满足 p_1<p_2<...<p_m,则 N 的正约数集合可写作:

{p_1^{b_1}p_2^{b_2}...p_m^{c_m}},其中 0\leq b_i\leq c_i

        N 的正约数个数

\large (c_1+1)*(c_2+1)*...*(c_m+1)=\prod_{m}^{i=1}(c_i+1)

        N 的所有正约数的和是:

\large (1+p_1 + p_1^2+...+p_1^{c_1})*...*(1+p_m + p_m^2+...+p_1^{c_m})=\prod_{m}^{i=1}(\sum_{j=0}^{c_i}(p_i)^j)

理解:从每个质因数依次选择一个项数,根据乘法原理,凑成所有的数然后相加


AcWing 870. 约数个数

输入样例:

3
2
6
8

输出样例:

12

#include <iostream>
#include <algorithm>
#include <unordered_map>

using namespace std;

typedef long long LL;

const int mod = 1e9 + 7;

int main()
{
    int n;
    cin >> n;
    
    unordered_map<int,int> primes;
    while(n --)
    {
        int x;
        cin >> x;
        
        for(int i = 2; i <= x / i; i ++ )
            while(x % i == 0)
            {
                x /= i;
                primes[i] ++ ;
            }
        if(x > 1) primes[x] ++ ;
    }
    
    LL res = 1;
    for(auto prime : primes) res = res * (prime.second + 1) % mod;
    
    cout << res << endl;
    return 0;
}

AcWing 871. 约数之和 

输入样例:

3
2
6
8

输出样例:

252


#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <vector>

using namespace std;

typedef long long LL;

const int N = 110, mod = 1e9 + 7;

int main()
{
    int n;
    cin >> n;

    unordered_map<int, int> primes;

    while (n -- )
    {
        int x;
        cin >> x;

        for (int i = 2; i <= x / i; i ++ )
            while (x % i == 0)
            {
                x /= i;
                primes[i] ++ ;
            }

        if (x > 1) primes[x] ++ ;
    }

    LL res = 1;
    for (auto p : primes)
    {
        LL a = p.first, b = p.second;
        LL t = 1;
        while(b -- ) t = (t * a  + 1) % mod;
        res = res * t % mod;
    }

    cout << res << endl;

    return 0;
}

最大公约数

定义

        若自然数 d 同时是自然数 a 和 b 的约数,则称 d 是 a 和 b 的公约数。在所有的 a 和 b 的公约数中最大的一个,称为 a 和 b 的最大公约数,记为 gcd(a, b).

        若自然数 m 同时是 a 和 b 的倍数,则称 m 是 a 和 b 的公倍数。在所有的 a 和 b 的公约数中最小的一个,称为 a 和 b 的最大公约数,记为 lcm(a, b).

         同理,我们可以定义三个数以及更多个数的最大公约数,最小公倍数。

定理

\large \forall a,b \epsilon \mathbb{N} \large gdc(a,b)*cm(a,b)=a*b

证明: 

        设 \small d=gcd(a,b),a_0=a/d,b_0=b/d。根据最大公约数的定义,有 \small gcd(a_0,b_0)=1,再根据最小公倍数的定义,有 \small lcm(a_0,b_0)=a_0*b_0

        于是 lcm(a,b)=lcm(a_0*d,b_0*d)=lcm(a_0,b_0)*d=a_0*b_0*d=a*b/d

证毕


九章算术·更相减损术 

\small \forall a,b\epsilon \mathbb{N},a\geq b 有 \small gcd(a,b)=gcd(b,a-b)=gcd(a,a-b)

\small \forall a,b\mathbb{N} 有 \small gcd(2a,2b)=2gcd(a,b)

证明:

        根据最大公约数的定义,后者显然成立,我们主要证明前者。

        对于 a,b 的任意公约数 d ,因为 d|a, d|b,所以 d|(a - b) 。因此 d 也是 b , a - b 的公约数。反之亦成立。故 a,b 的公约数集合和 b, a - b 的公约数集合相同。于是他们的最大公约数也相同,对于 a, a - b 同理。

证毕。


欧几里得算法

\large \forall a,b\epsilon \mathbb{N},b\neq 0,gcd(a,b)=gcd(b,a \; mod\; b)

证明:

        若 a < b,gcd(b,a \;mod\;b)=gcd(b,a)=gcd(a,b),命题成立。

        若 a >= b,不妨设 a = q * b + r,其中 0 <= r < b。显然 r = a mod b。对于 a, b 的任意公约数 d,因为 d | a. d | b, 故 d | (a - qb),即 d | r,因此 d 也是 b, r 的公约数。反之亦成立。故 a,b 的公约数集合与 a , a mod b 的公约数集合相等。于是他们的最大公约数也相等。

证毕。


AcWing 872. 最大公约数 

输入样例:

2
3 6
4 6

输出样例:

3
2

#include <iostream>

using namespace std;

int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}

int main()
{
    int n;
    cin >> n;
    while(n --)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        printf("%d\n",gcd(a,b));
    }
}
  • 16
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 15
    评论
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玄澈_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值