一、在调优之前,我们需要清楚以下两个问题:
- MapReduce为什么跑的慢?
- MapReduce程序的瓶颈是什么?
二、MapReduce程序效率的瓶颈可以概括为以下两点:
2.1:计算机性能(即硬件)
CPU、内存、磁盘健康、网络状况
2.2:I/O操作优化
1. 数据倾斜
2. map和reduce数设置不合理
3. map运行时间太长,导致reduce等待时间过长
4. 小文件过多
5. 大量的不可分割的超大文件
6. spill次数过多
7. merge次数过多等。
三、找到了问题,那么再来看解决方法:
MapReduce 优化方法主要从六个方面考虑:数据输入、Map 阶段、Reduce 阶段、IO 传输、数据倾斜问题和常用的调优参数。
3.1 数据输入
(1)合并小文件:在执行 mr任务前将小文件进行合并,大量的小文件会产生大量的map 任务,增大 map 任务装载次数,而任务的装载比较耗时,从而导致 mr 运行较慢。
(2)采用 CombineTextInputFormat来作为输入,解决输入端大量小文件场景。
3.2 Map阶段
1)减少溢写(spill)次数:通过调整 io.sort.mb及 sort.spill.percent参数值,增大触发spill 的内存上限,减少 spill 次数,从而减少磁盘 IO。
2)减少合并(