MapReduce调优

本文主要探讨了MapReduce程序的瓶颈,包括硬件性能和I/O操作优化,并详细介绍了MapReduce的优化方法,如数据输入合并、Map阶段减少溢写和合并次数、Reduce阶段合理设置任务数量、IO传输优化以及解决数据倾斜问题的策略。通过这些调优措施,可以显著提升MapReduce程序的运行效率。
摘要由CSDN通过智能技术生成

一、在调优之前,我们需要清楚以下两个问题

  1. MapReduce为什么跑的慢?
  2. MapReduce程序的瓶颈是什么?

二、MapReduce程序效率的瓶颈可以概括为以下两点:
2.1:计算机性能(即硬件)
CPU、内存、磁盘健康、网络状况
2.2:I/O操作优化
1. 数据倾斜
2. map和reduce数设置不合理
3. map运行时间太长,导致reduce等待时间过长
4. 小文件过多
5. 大量的不可分割的超大文件
6. spill次数过多
7. merge次数过多等。
三、找到了问题,那么再来看解决方法:
MapReduce 优化方法主要从六个方面考虑:数据输入、Map 阶段、Reduce 阶段、IO 传输、数据倾斜问题和常用的调优参数。
3.1 数据输入
(1)合并小文件:在执行 mr任务前将小文件进行合并,大量的小文件会产生大量的map 任务,增大 map 任务装载次数,而任务的装载比较耗时,从而导致 mr 运行较慢。
(2)采用 CombineTextInputFormat来作为输入,解决输入端大量小文件场景。
3.2 Map阶段
1)减少溢写(spill)次数:通过调整 io.sort.mb及 sort.spill.percent参数值,增大触发spill 的内存上限,减少 spill 次数,从而减少磁盘 IO。
2)减少合并(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值