洛谷4284 BZOJ3566 SHOI2014 概率充电器 概率期望 树形dp

19 篇文章 0 订阅
18 篇文章 0 订阅

题目链接

题意:
给你一棵树,树上每一个点一开始有一定概率有电,并且边会导电,每条边又一个导电的概率。求导电完毕后有电的点的个数的期望。 n &lt; = 500000 n&lt;=500000 n<=500000

题解:
一道不错的题。

我们首先的一个考虑是想利用期望的线性性来对整棵树进行树形dp。我们设 d p [ x ] dp[x] dp[x]为点 x x x有电的概率,然后转移的化分从子树和从父节点两种情况,用经典的两遍dfs的方法,第一遍从子树到父节点,第二遍从父节点到子树。从父节点转移的时候要去掉这个子树的贡献。于是在第一遍的时候有 d p [ x ] = ∑ d p [ y ] ∗ p dp[x]=\sum dp[y]*p dp[x]=dp[y]p,其中 p p p表示两边导电的概率,第二遍是 d p [ x ] + = ( d p [ f a [ x ] ] − d p [ x ] ∗ p ) ∗ p dp[x]+=(dp[fa[x]]-dp[x]*p)*p dp[x]+=(dp[fa[x]]dp[x]p)p。然后就做完了。好,你是不是也这么想的?看上去很有道理啊。有没有什么问题啊?

有!你这样算会遇到这样一个问题,就是你一个点有电的概率可能大于1!你可能会想,那还不简单,转移的时候和1取min啊。看起来又对了是不是?还是不对!你有没有好好想想为什么概率会比1大啊。原因是,这个点有电,有以下两种情况:本身有电、相连的节点有电并且从导线导电过来了。但是这些事情并不是相互独立的,是可能同时发生的,可能本身有电,又同时从好几个节点导过来了点,像一开始那样求的应该是这个点的期望充电次数。可能同时发生的话你的同一个事件对答案就贡献了好几遍,所以会算出来答案比正确答案大,甚至出现算出的概率大于1的情况,所以这里的概率是不能直接累加的。那该怎么办?

OI有一个经典的思想,就是正难则反!
我们考虑一个点没有电的概率,一个点没有点的情况是,这个点本身没有电,并且所有与它相连的点都没有把电导过来。有没有发现什么不一样?之前是两个条件任意一个发生,就会有电,任意一个这个条件会导致很多重复统计,但是这里却是两个条件同时满足!同时满足就意味着不存在什么重复贡献答案了,此时我们是要求这两个条件同时发生的概率。很明显,自己没有电和周围的电没有把电导过来是两个独立的事件,所以概率可以直接相乘得出答案。此时我们就可以使用刚才是树形dp的思想,两遍dfs来统计答案了。正确的dp方程应该是,在第一遍的时候: d p [ x ] = ( 1 − x 本 身 带 电 的 概 率 ) ∏ ( d p [ y ] + ( 1 − d p [ y ] ) ∗ ( 1 − 边 导 电 的 概 率 ) ) dp[x]=(1-x本身带电的概率)\prod(dp[y]+(1-dp[y])*(1-边导电的概率)) dp[x]=(1x)(dp[y]+(1dp[y])(1))。第二遍的时候 x x x的贡献是乘给了父节点,于是父节点除以 x x x的贡献就好了,我们把父节点去掉 x x x之后没有电的概率记作 g g g,那么 g = ( d p [ f a [ x ] / ( d p [ x ] + ( 1 − d p [ x ] ) ∗ ( 1 − 边 导 电 的 概 率 ) ) ) ∗ g=(dp[fa[x]/(dp[x]+(1-dp[x])*(1-边导电的概率)))* g=(dp[fa[x]/(dp[x]+(1dp[x])(1))),然后 d p [ x ] ∗ = g + ( 1 − g ) ∗ ( 1 − 边 导 电 的 概 率 ) dp[x]*=g+(1-g)*(1-边导电的概率) dp[x]=g+(1g)(1)就可以了。
这样就真的做完了。

代码:

#include <bits/stdc++.h>
using namespace std;

int n,hed[500010],cnt,fa[500010];
double dp[500010],ans;
const double eps=1e-8;
struct node
{
	int to,next;
	double dis;
}a[2000010];
inline void add(int from,int to,double dis)
{
	a[++cnt].to=to;
	a[cnt].dis=dis;
	a[cnt].next=hed[from];
	hed[from]=cnt;
}
inline void dfs(int x)
{
	for(int i=hed[x];i;i=a[i].next)
	{
		int y=a[i].to;
		if(y==fa[x])
		continue;
		fa[y]=x;
		dfs(y);
		dp[x]*=dp[y]+(1.0-dp[y])*(1.0-a[i].dis);
	}
}
inline void dfs2(int x)
{
	for(int i=hed[x];i;i=a[i].next)
	{
		int y=a[i].to;
		if(y==fa[x])
		continue;
		double ji=dp[x]/(dp[y]+(1.0-dp[y])*(1.0-a[i].dis));
		dp[y]*=ji+(1.0-ji)*(1.0-a[i].dis);		
		dfs2(y);
	}
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n-1;++i)
	{
		int x,y,z;
		scanf("%d%d%d",&x,&y,&z);
		double gg=(double)z/100;
		add(x,y,gg);
		add(y,x,gg);
	}
	for(int i=1;i<=n;++i)
	{
		scanf("%lf",&dp[i]);
		dp[i]/=100;
		dp[i]=1.0-dp[i];
	}
	dfs(1);
	dfs2(1);
	for(int i=1;i<=n;++i)
	ans+=1-dp[i];
	printf("%.6lf\n",ans);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值