洛谷3768 简单的数学题 莫比乌斯反演 杜教筛

题目链接

题意:
给你 n n n p p p,求 ∑ i = 1 n ∑ j = 1 n i ∗ j ∗ g c d ( i , j ) ( m o d   p ) \sum_{i=1}^n\sum_{j=1}^ni*j*gcd(i,j)(mod\ p) i=1nj=1nijgcd(i,j)(mod p) n &lt; = 1 e 10 , p n&lt;=1e10,p n<=1e10,p是一个大质数。

题解:
看到有各种奇怪的推法,但是看到有一种特别快速的推法。
∑ i = 1 n ∑ j = 1 n i ∗ j ∗ g c d ( i , j ) \sum_{i=1}^n\sum_{j=1}^ni*j*gcd(i,j) i=1nj=1nijgcd(i,j) 根据 ∑ d ∣ n φ ( d ) = n \sum_{d|n}\varphi(d)=n dnφ(d)=n得: = ∑ i = 1 n ∑ j = 1 n ∑ k ∣ i , k ∣ j φ ( k ) =\sum_{i=1}^n\sum_{j=1}^n\sum_{k|i,k|j}\varphi(k) =i=1nj=1nki,kjφ(k) = ∑ k = 1 n ∑ k ∣ i ∑ k ∣ j i ∗ j =\sum_{k=1}^n\sum_{k|i}\sum_{k|j}i*j =k=1nkikjij 各提出一个 k k k来得: = ∑ k = 1 n φ ( k ) ∗ k 2 ∑ i = 1 n / k ∑ j = 1 n / k i ∗ j =\sum_{k=1}^n\varphi(k)*k^2\sum_{i=1}^{n/k}\sum_{j=1}^{n/k}i*j =k=1nφ(k)k2i=1n/kj=1n/kij = ∑ k = 1 n φ ( k ) ∗ k 2 ∑ i = 1 n / k i ∗ ∑ j = 1 n / k j =\sum_{k=1}^n\varphi(k)*k^2\sum_{i=1}^{n/k}i*\sum_{j=1}^{n/k}j =k=1nφ(k)k2i=1n/kij=1n/kj = ∑ k = 1 n φ ( k ) ∗ k 2 ( ∑ i = 1 n / k i ) 2 =\sum_{k=1}^n\varphi(k)*k^2(\sum_{i=1}^{n/k}i)^2 =k=1nφ(k)k2(i=1n/ki)2 = ∑ k = 1 n φ ( k ) ∗ k 2 ∑ i = 1 n / k i 3 =\sum_{k=1}^n\varphi(k)*k^2\sum_{i=1}^{n/k}i^3 =k=1nφ(k)k2i=1n/ki3 这一步的证明请见这里

然后这个式子的前半部分 ∑ k = 1 n φ ( k ) ∗ k 2 \sum_{k=1}^n\varphi(k)*k^2 k=1nφ(k)k2是可以杜教筛的,后半部分是有公式可以 O ( 1 ) O(1) O(1)计算前缀和的,于是就可以做了。

至于前面那个式子怎么用杜教筛,其实我的学习笔记里有介绍,只不过是 ϕ ⋅ i d \phi\cdot id ϕid再乘了一个 i d id id就行了。请看这里

于是就做完了,复杂度就是杜教筛的复杂度。

代码:

#include <bits/stdc++.h>
using namespace std;

long long n,mod,p[5000010],phi[5000010],s[5000010];
long long ans,ni;
const long long maxn=5000000;
int cnt,vis[5000010];
map<long long,long long> mp;
inline long long ksm(long long x,long long y)
{
	long long res=1;
	while(y)
	{
		if(y&1)
		res=res*x%mod;
		x=x*x%mod;
		y>>=1;
	}
	return res;
}
inline long long calc2(long long x)
{
	x%=mod;
	return x*(x+1)%mod*(2*x+1)%mod*ni%mod;
}
inline long long calc3(long long x)
{
	x%=mod;
	return (x*(x+1)/2)%mod*((x*(x+1)/2)%mod)%mod;
}
inline long long solve(long long x)
{
	if(x<=maxn)
	return s[x];
	if(mp[x])
	return mp[x];
	long long r,res=calc3(x);
	for(long long l=2;l<=x;l=r+1)
	{
		r=x/(x/l);
		res=(res-(calc2(r)-calc2(l-1)+mod)%mod*solve(x/l)%mod+mod)%mod;
	}
	mp[x]=res;
	return res;
}
int main()
{
	scanf("%lld%lld",&mod,&n);
	phi[1]=1;
	for(int i=2;i<=5000000;++i)
	{
		if(!vis[i])
		{
			p[++cnt]=i;
			phi[i]=i-1;
		}
		for(int j=1;j<=cnt&&i*p[j]<=5000000;++j)
		{
			vis[i*p[j]]=1;
			if(i%p[j]==0)
			{
				phi[i*p[j]]=phi[i]*p[j];
				break;
			}
			phi[i*p[j]]=phi[i]*(p[j]-1);
		}
	}
	for(int i=1;i<=5000000;++i)
	s[i]=(s[i-1]+phi[i]*i%mod*i%mod)%mod;
	ni=ksm(6,mod-2);
	long long r; 
	for(long long l=1;l<=n;l=r+1)
	{
		r=n/(n/l);
		ans=(ans+(solve(r)-solve(l-1)+mod)%mod*calc3(n/l)%mod)%mod;
	}
	printf("%lld\n",ans);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值