Concave function

Concave function


In mathematics, a concave function is the negative of a convex function. A concave function is also synonymously called concave downwards,concave downconvex upwardsconvex cap or upper convex.

Contents

 [hide

[edit]Definition

A real-valued function f on an interval (or, more generally, a convex set in vector space) is said to be concave if, for any x and y in the interval and for any t in [0,1],

f(tx+(1-t)y)\geq t f(x)+(1-t)f(y).

A function is called strictly concave if

f(tx + (1-t)y) > t f(x) + (1-t)f(y)\,

for any t in (0,1) and x ≠ y.

For a function f:RR, this definition merely states that for every z between x and y, the point (zf(z) ) on the graph of f is above the straight line joining the points (xf(x) ) and (yf(y) ).

ConcaveDef.png

A function f(x) is quasiconcave if the upper contour sets of the function S(a)=\{x: f(x)\geq a\} are convex sets.[1]

[edit]Properties

A function f(x) is concave over a convex set if and only if the function −f(x) is a convex function over the set.

differentiable function f is concave on an interval if its derivative function f ′ is monotonically decreasing on that interval: a concave function has a decreasing slope. ("Decreasing" here means non-increasing, rather than strictly decreasing, and thus allows zero slopes.)

For a twice-differentiable function f, if the second derivativef ′′(x), is positive (or, if the acceleration is positive), then the graph is convex; if f ′′(x) is negative, then the graph is concave. Points where concavity changes are inflection points.

If a convex (i.e., concave upward) function has a "bottom", any point at the bottom is a minimal extremum. If a concave (i.e., concave downward) function has an "apex", any point at the apex is a maximal extremum.

If f(x) is twice-differentiable, then f(x) is concave if and only if f ′′(x) is non-positive. If its second derivative is negative then it is strictly concave, but the opposite is not true, as shown by f(x) = -x4.

If f is concave and differentiable then

f(y) \leq f(x) + f'(x)[y-x] [2]

continuous function on C is concave if and only if for any x and y in C

f\left( \frac{x+y}2 \right) \ge \frac{f(x) + f(y)}2

If a function f is concave, and f(0) ≥ 0, then f is subadditive. Proof:

  • since f is concave, let y = 0, f(tx) = f(tx+(1-t)\cdot 0) \ge t f(x)+(1-t)f(0) \ge t f(x)
  • f(a) + f(b) = f \left((a+b) \frac{a}{a+b} \right) + f \left((a+b) \frac{b}{a+b} \right)\ge \frac{a}{a+b} f(a+b) + \frac{b}{a+b} f(a+b) = f(a+b)

[edit]Examples

[edit]See also

[edit]Notes

  1. ^ Varian 1992, p. 496.
  2. ^ Varian 1992, p. 489.
  3. ^ Thomas M. Cover and J. A. Thomas (1988). "Determinant inequalities via information theory". SIAM journal on matrix analysis and applications 9 (3): 384–392.

[edit]References

  • Crouzeix, J.-P. (2008). "Quasi-concavity". In Durlauf, Steven N.; Blume, Lawrence E. The New Palgrave Dictionary of Economics (Second ed.). Palgrave Macmillan. doi:10.1057/9780230226203.1375.
  • Rao, Singiresu S. (2009). Engineering Optimization: Theory and Practice. John Wiley and Sons. p. 779. ISBN 0-470-18352-7.
  • Varian, Hal R. (1992). Microeconomic Analysis (Third ed.). W.W. Norton and Company.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值