凸优化学习笔记 4:Convex Function

个人博客 Glooow ,欢迎各位大驾光临

1. 凸函数

1.1 凸函数定义

凸函数(convex function)的定义:
f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) , ∀ x , y ∈ dom f , θ ∈ [ 0 , 1 ] f(\theta x+(1-\theta)y)\le\theta f(x)+(1-\theta)f(y),\quad \forall x,y\in\text{dom}f,\theta\in[0,1] f(θx+(1θ)y)θf(x)+(1θ)f(y),x,ydomf,θ[0,1]
函数 f f f
扩展函数(extended-value extension)
f ~ \tilde{f} f~ 定义为
f ~ ( x ) = { f ( x ) , x ∈ dom f ∞ , x ∉ dom f \tilde{f}(x)=\begin{cases}f(x),&x\in\text{dom}f\\\infty,&x\notin\text{dom}f\end{cases} f~(x)={ f(x),,xdomfx/domf
相当于对原来函数 f f f 的定义域进行了扩展。

1.2 常见凸函数

1.2.1 R R R

凸函数(convex)

  • 仿射函数 a x + b ax+b ax+b,for any a , b ∈ R a,b\in R a,bR
  • 指数函数 e a x e^{ax} eax,for any a ∈ R a\in R aR
  • 幂函数 x α , x ∈ R + + x^\alpha,x\in R_{++} xα,xR++,for α ≥ 1 \alpha\ge1 α1 or α ≤ 0 \alpha\le0 α0
  • 绝对值幂函数 ∣ x ∣ p , x ∈ R \vert x\vert^p,x\in R xp,xR,for p ≥ 1 p\ge 1 p1
  • 负熵 x log ⁡ x , x ∈ R + + x\log x,x\in R_{++} xlogx,xR++

凹函数(concave)

  • 仿射函数 a x + b ax+b ax+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值