个人博客 Glooow ,欢迎各位大驾光临
文章目录
1. 凸函数
1.1 凸函数定义
凸函数(convex function)的定义:
f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) , ∀ x , y ∈ dom f , θ ∈ [ 0 , 1 ] f(\theta x+(1-\theta)y)\le\theta f(x)+(1-\theta)f(y),\quad \forall x,y\in\text{dom}f,\theta\in[0,1] f(θx+(1−θ)y)≤θf(x)+(1−θ)f(y),∀x,y∈domf,θ∈[0,1]
函数 f f f 的扩展函数(extended-value extension) f ~ \tilde{f} f~ 定义为
f ~ ( x ) = { f ( x ) , x ∈ dom f ∞ , x ∉ dom f \tilde{f}(x)=\begin{cases}f(x),&x\in\text{dom}f\\\infty,&x\notin\text{dom}f\end{cases} f~(x)={
f(x),∞,x∈domfx∈/domf
相当于对原来函数 f f f 的定义域进行了扩展。
1.2 常见凸函数
1.2.1 R R R
凸函数(convex)
- 仿射函数 a x + b ax+b ax+b,for any a , b ∈ R a,b\in R a,b∈R
- 指数函数 e a x e^{ax} eax,for any a ∈ R a\in R a∈R
- 幂函数 x α , x ∈ R + + x^\alpha,x\in R_{++} xα,x∈R++,for α ≥ 1 \alpha\ge1 α≥1 or α ≤ 0 \alpha\le0 α≤0
- 绝对值幂函数 ∣ x ∣ p , x ∈ R \vert x\vert^p,x\in R ∣x∣p,x∈R,for p ≥ 1 p\ge 1 p≥1
- 负熵 x log x , x ∈ R + + x\log x,x\in R_{++} xlogx,x∈R++
凹函数(concave)
- 仿射函数 a x + b ax+b ax+