【stable diffusion】在AutoDL算力云平台部署stable diffusion

本文介绍了2022年的深度学习模型StableDiffusion,如何在本地设备受限时通过AutoDL的GPU租用服务提升效率。作者提供了购买显卡、选择社区镜像、配置JupyterLab和WebUI的详细步骤,以及处理HTTP访问限制的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章中提到的网址连接
AutoDL的网址连接:https://www.autodl.com/
Stable Diffusion是2022年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,尽管它也可以应用于其他任务,如内补绘制、外补绘制,以及在提示词指导下产生图生图的转变。
但是如果在本地电脑部署stable diffusion,会受到设备本身的限制,其本身也建议在10GB以上的显存(GDDR或HBM)下运行。暨如果设备的性能不高的话会被ta超长的出图时间搞的崩溃。所以现在推荐使用另一种方法来解放设备,拉高我们的生产效率。
在这里插入图片描述
AutoDL是一个算力云平台,提供稳定的GPU租用服务。我们可以在这里租用4080-4090的算力资源。但是算力资源的租用并不是很便宜,3080 Ti的租用价格在1.14/小时左右,4090的租用价格在2.56/小时左右。这种方式适合前期启动资金不足,无法购入算力设备的朋友。等赚够了足够的资金还是建议配置一台算力设备。
在这里插入图片描述
第一步就是选购一台设备,我选购的是一台4090的显卡,这个平台是等时间满了之后扣除余额来缴费,所以你可以在购买前先往钱包里充值点余额。
在这里插入图片描述
在镜像选项中选择社区镜像,在GitHub上有很多大神根据stable diffusion的开源二次开发了很多镜像,这里推荐的是OMATC/table-difusion-webui/NovelAl-Consolidation-Package-3.1:v15这个版本,这些镜像都是自带网页UI的,就是说进去就能看到你熟悉的stable diffusion界面。
在这里插入图片描述
创建完成后在选择这个JupyterLab进入编辑界面,配置一些信息
在这里插入图片描述
先点击大红色方框中的内容进行选中,再点击那个三角形运行这段代码,记得刷新一下,才会出现下面的内核
在这里插入图片描述
运行完成后找到右上角小红色方框的内容,然后更改内核,将内核更改成图片中的XL_env
在这里插入图片描述
更改完成之后界面下来选中这段代码,也运行一下,就会出现启动器,然后点那个绿色的按钮。
在这里插入图片描述
找到这个启动webUI,不同版本可能名字不同,但是意思的一样的,下拉找到这四个选项然后都勾上就行,再往下拉会有个启动按钮,反正是绿色的,按了等安装完成就行。
在这里插入图片描述
点击自定义服务就能访问UI界面了。

在这里插入图片描述
之前是可以直接使用HTTP在浏览器进行浏览,但是某些机器由于地方政策原因只能为企业认证用户提供HTTP服务,所以个人用户需要下载powershell访问。

### 如何在 AutoDL 平台运行 Stable Diffusion 模型 #### 创建 autoDL 云服务器实例 为了能够在 AutoDL 上运行 Stable Diffusion 模型,首先需要创建一个合适的云服务器实例。这一步骤涉及到选择适合的配置来支持 GPU 加速的任务需求[^1]。 #### 配置并启动 Stable Diffusion Web UI 一旦拥有可用的云服务器实例之后,安装和设置 Stable Diffusion 的 Web 用户界面 (Web UI) 是必要的操作。此过程通常包括下载预构建镜像或是按照官方指南手动搭建环境。通过命令行工具可以完成这些工作,并确保所有依赖项都被正确安装。 ```bash git clone https://github.com/AUTOMATIC1784/auto-stable-diffusion-webui.git cd auto-stable-diffusion-webui pip install -r requirements.txt ``` #### 准备模型文件 对于想要使用的特定版本的 Stable Diffusion 模型,需将其放置于指定位置以便加载到程序中。具体来说,在 `/autodl-tmp/stable-diffusion-webui/models/Stable-diffusion` 路径下找到对应的文件夹并将模型文件放入其中;也可以直接从本地计算机拖拽至该目录内[^2]。 #### 设置输入输出路径 当准备就绪后,还需要定义好生成图像保存的位置以及任何其他可能影响执行流程的关键参数。例如,默认情况下,生成的结果会存储在一个名为 `outputs` 的子目录里,而用户可以根据个人喜好调整这一设定。 #### 开始训练或推理任务 最后,在一切准备工作完成后就可以开始实际的工作了——无论是微调现有模型还是利用其来进行创意性的艺术创作。如果是在 JupyterLab 中进行开发,则可以通过 Notebook 文件轻松管理整个项目生命周期内的各个阶段[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值