【大模型】AutoDL部署AI绘图大模型Stable Diffusion使用详解

目录

一、前言

二、AI绘图大模型概述

2.1 AI绘图大模型介绍

2.2 AI绘图大模型特点

2.3 AI绘图大模型优势

三、主流的AI绘图大模型介绍

3.1 Midjourney

3.1.1 Midjourney介绍

3.1.2 Midjourney功能特点

3.1.3 Midjourney使用场景

3.2 Stable Diffusion

3.2.1 Stable Diffusion介绍

3.2.2 Stable Diffusion特点

3.2.3 Stable Diffusion应用场景

3.3 Adobe Firefly

3.3.1 Adobe Firefly功能特点介绍

3.3.2 Adobe Firefly使用场景

3.4 DALL·E

3.4.1 DALL·E 介绍

3.4.2 DALL·E 特点

3.4.3 DALL·E 技术背景

3.4.4 DALL·E 应用场景

四、基于AutoDL部署Stable Diffusion

4.1 部署Stable Diffusion环境说明

4.2 AutoDL 介绍

4.2.1 AutoDL 特点

4.3 AutoDL 部署Stable Diffusion过程

4.3.1 注册账号

4.3.2 实名认证与充值

4.3.3 创建实例

4.3.4 选择合适版本的镜像

4.3.5 前置环境配置

4.3.6 运行启动器

4.3.7 打开Stable Diffusion使用控制台

4.4 实用工具

五、写在文末


一、前言

随着开源大模型的兴盛,AI绘图大模型火热程度也越来越高,并且在众多的领域开始逐步商用,市面上也陆续出现了很多功能强大的AI绘图大模型,本文以开源大模型Stable Diffusion为例进行说明。

二、AI绘图大模型概述

2.1 AI绘图大模型介绍

AI绘图大模型是指利用人工智能技术,特别是深度学习算法来生成图像的模型。这些模型通常能够根据文本描述或其他形式的输入生成相应的图像,具有较高的艺术价值和技术含量。

2.2 AI绘图大模型特点

以下是一些典型的AI绘图大模型的特点

    ### 使用 AutoDL 部署大规模机器学习模型 #### 选择合适的模型 对于大规模机器学习模型的部署,默认情况下,镜像会加载 Qwen1.5-7B-Chat 模型作为基础模型[^1]。然而,用户可以根据需求,在 WebUI 中更改为其他已下载至本地的模型。 #### 准备环境与资源 为了确保顺利部署,建议从 ModelScope 平台下载所需的模型及其配套代码到本地环境中。这一步骤可以通过 Python 脚本实现自动化处理: ```python from modelscope import snapshot_download from transformers import AutoModelForCausalLM, AutoTokenizer model_id = 'qwen/Qwen-VL-Chat' revision = 'v1.0.0' # 定义保存路径 local_dir = "/root/autodl-tmp/Qwen-VL-Chat" # 执行下载操作 snapshot_download(repo_id=model_id, revision=revision, local_dir=local_dir) ``` 上述脚本展示了如何利用 `modelscope` 库中的 `snapshot_download` 方法来完成模型文件的获取工作,并将其存储于指定位置以便后续调用[^2]。 #### 实施部署流程 当完成了前期准备工作之后,便可以进入具体的部署环节。通常来说,这一过程涉及以下几个方面的工作: - **硬件配置**:确认计算设备满足运行目标模型的要求; - **软件安装**:确保操作系统上已经正确设置了必要的依赖项和服务组件; - **参数调整**:依据实际情况优化各项设置以达到最佳性能表现; 针对特定的大规模预训练语言模型如 ChatGLM3-6B 的部署指南提供了详细的指导说明,涵盖了从初步规划到最后上线使用的各个阶段要点[^3]。
    评论 222
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    小码农叔叔

    谢谢鼓励

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值