【基础算法】【ACM】差分约束系统与最短路算法

本文介绍了差分约束系统的基本概念及其在ACM竞赛中的应用,阐述了如何将差分约束系统转化为单源最短路问题,探讨了解的存在性、性质以及部分变量已知时的处理方法,并讨论了带有系数的差分约束系统问题和其他形式的约束问题的求解策略。
摘要由CSDN通过智能技术生成

朴素差分约束系统的求解

朴素的差分约束系统是一个不等式组的集合,集合中每一个不等式都形如Ai – Aj <= Xk。对差分约束系统的求解也就是要对不等式组求得任意一组或者满足某种最优性质的一组可行解。差分约束系统在各种计算机和实际的调度问题中都有应用,也可以对某些优化问题的求解提供帮助。

 

最朴素的差分约束系统可以将不等式组的求解转换成有向图上的单源最短路求解问题,可以利用Dijkstra算法Bellman-Ford算法或者SPFA算法等经典的单源最短路算法进行求解,下面着重介绍一下如何将不等式组的求解转化为图上单源最短路问题。

 

讨论不等式Aij <= Xj – Xi <= Bij,我们可以将其转化为两个仅含有小于等于号的线性不等式:

       Xi – Xj <= -Aij

       Xj – Xi <= Bij

 

在ACM系列竞赛中,经常有调度类的问题具有以上形式的约束或者具有能够转化为以上形式的约束条件。

 

将每一个约束变量对应到有向图中的一个结点,每个小于等于号的不等式对应一条有向边,假如有n个约束变量,m个不等式约束,那么我们就能得到一个n个点,m条有向边的有向图,记dist(i)为源点到第i号结点的最短路径的长度。

 

对于上面提到的第二个不等式,能够继续转化为Xj <= Xi + Bij。得到的这个式子形式很容易联想到三角不等式,如果让Xi表示源点到i号结点的最短路径长度,也就说Xi ≡ dist(i),那么从j号结点连一条长度为Bij的有向边到i号结点,那么由于最短路的模型,就有dist(i) <= dist(j) + Bij,这样一来也就满足了相应的不等式约束条件。通过以上的转化,有向图中的一条边u->v就对应了有关Xu和Xv的一个不等式约束。

 

可以进一步分析发现该问题要么无解,要么有无穷多的解。因为如果有一组满足条件的解(X1, X2, X3, …, Xn)那么对于任意的常数k,(X1 + k, X2 + k, X3 + k, …, Xn +k)也是一组可行解。那么就需要借助一个基准值来表示一类解集,该基准也可以做为单源最短路算法中需要用到的源点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值