莫比乌斯小结

毕竟too young,以为理解原理就可以推演一切,还是现实与bin神题解给了我致命一击

先小小总结一些点:

设A(n) = gcd(i,j)==n 的个数,其中lx<=i<=rx,ly<=j<=ry,

B(n)= n | gcd(i,j)  的个数,那么B(n) = ((rx-lx)/n)*((ry-ly)/n)

可类推到gcd(i,j,k,……,)的情况

很明显 B(d) = ∑(d|n,A(n))-》A(d)= ∑(d|n,u(n/d)B(n))

然后,莫比乌斯函数快速版

int ci(int n, int d)
{
	int cnt = 0;
	while (n % d == 0)
	{
		cnt++;
		n /= d;
	}
	return cnt;
}


for (int i = 2; i <= N; i++)
	{
		if (su[i])continue;
		for (int j = i; j <= N; j += i)
		{
			int c = ci(j, i);
			su[j] += c;
			if (c > 1)h[j] = -1;
			else if (h[j] >= 0)
			{
				h[j]++;
			}
		}
	}

int u(int x)
{
	if (h[x] == -1) return 0;
	if (h[x] & 1) return -1;
	return 1;
}
h函数是不同素因子个数,如果含平方因子则-1,然后u即为莫比乌斯值,su是素因子个数


暂时先这样,顺便贴贴预处理组合数

ll ksm(ll x, ll k)
{
	ll ans = 1;
	while (k)
	{
		if (k & 1)
			ans *= x;
		x *= x;
		k >>= 1;
		ans %= mod;
		x %= mod;
	}
	return ans;
}

void chu()
{
    
	nl[0] = 1;
	ni[0] = 1;
	for (int i = 1; i <= N; i++)
	{
		nl[i] = nl[i - 1] * i % mod;
		ni[i] = ksm(nl[i], mod - 2);
	}
}

其中mod必须是素数,否则要用扩展欧几里得求逆元,然后C(n,k) = nl[n]*ni[k]%mod*ni[n-k]%mod;


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值