莫比乌斯学习小结

前置知识

数论分块,莫比乌斯函数,和式的相关推导(积累)

数论分块

这个我写过一篇博客,下面是链接
https://blog.csdn.net/qq_43101466/article/details/100999784

莫比乌斯函数

μ ( n ) = { 1 n 为 1 ( − 1 ) k k 为 n 的 质 因 子 个 数 0 n 存 在 非 平 方 因 子 {\displaystyle \mu (n)= {\begin{cases} 1 \quad n为1\\ (-1)^{k} \quad k为n的质因子个数\\ 0 \quad n存在非平方因子\\ \end{cases} }} μ(n)=1n1(1)kkn0n
这是个积性函数
相关性质:
1. ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d \mid n}\mu(d)=[n=1] dnμ(d)=[n=1],常用于反演中,使用中可将n替换掉
eg:现有 ∑ i = 1 N ∑ j = 1 M [ gcd ⁡ ( i , j ) = = 1 ] \sum_{i=1}^{N}\sum_{j=1}^{M}[\gcd (i,j)==1] i=1Nj=1M[gcd(i,j)==1],我们可以用 ∑ t ∣ g c d ( i , j ) μ ( t ) \sum_{t \mid gcd(i,j)}\mu(t) tgcd(i,j)μ(t)替换 [ gcd ⁡ ( i , j ) = = 1 ] [\gcd(i,j)==1] [gcd(i,j)==1],最后 ∑ i = 1 N ∑ j = 1 M ∑ d ∣ g c d ( i , j ) μ ( d ) \sum_{i=1}^{N}\sum_{j=1}^{M}\sum_{d \mid gcd(i,j)}\mu(d) i=1Nj=1Mdgcd(i,j)μ(d)然后枚举d可得 ∑ d = 1 min ⁡ ( N , M ) ⌊ N d ⌋ ⌊ M d ⌋ \sum_{d=1}^{\min(N,M)}\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor d=1min(N,M)dNdM
2.莫比乌斯函数与欧拉函数有一定关联
ϕ ( n ) n = ∑ d ∣ n μ ( d ) d \frac{\phi(n)}{n}=\sum_{d \mid n}\frac{\mu(d)}{d} nϕ(n)=dndμ(d)
简单分析一下:
移项 ϕ ( n ) = n ∑ d ∣ n μ ( d ) d \phi(n)=n\sum_{d \mid n}\frac{\mu(d)}{d} ϕ(n)=ndndμ(d)
若d中包含平方因子,则 μ ( d ) = 0 \mu(d)=0 μ(d)=0,故 μ ( d ) d \frac{\mu(d)}{d} dμ(d)由各个质因子乘积的倒数组成
我们发现, ∑ d ∣ n μ ( d ) d = ∏ ( 1 − 1 p ) \sum_{d \mid n}\frac{\mu(d)}{d}=\prod(1-\frac{1}{p}) dndμ(d)=(1p1)
ϕ ( n ) = n ∑ d ∣ n μ ( d ) d \phi(n)=n\sum_{d \mid n}\frac{\mu(d)}{d} ϕ(n)=ndndμ(d)
拓展: ∑ d ∣ n ϕ ( d ) = n \sum_{d \mid n}\phi(d) = n dnϕ(d)=n,证明略

莫比乌斯反演

了解了上述知识后,我们便可以进行莫比乌斯反演
已知 f ( d ) F ( n ) = ∑ n ∣ d f ( d ) f(d)\quad F(n)=\sum_{n \mid d}f(d) f(d)F(n)=ndf(d)
根据莫比乌斯反演,我们有:
f ( n ) = ∑ n ∣ d μ ( d n ) F ( d ) f(n)=\sum_{n \mid d}\mu(\frac{d}{n})F(d) f(n)=ndμ(nd)F(d)
相关证明利用到了狄利克雷卷积,等学了之后在来证明
还有另一变式:
已知 f ( d ) F ( n ) = ∑ d ∣ n f ( d ) f(d)\quad F(n)=\sum_{d \mid n}f(d) f(d)F(n)=dnf(d)
反演之后:
f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) f(n)=\sum_{d \mid n}\mu(d)F(\frac{n}{d}) f(n)=dnμ(d)F(dn)

例题有:
洛谷——P2257,P4450,P1829
hdu——1695,6428
相关题解可以看我写的

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值