2016东莞市特长生考试 村庄重建
Time Limit:10000MS Memory Limit:256000K
Total Submit:3 Accepted:1
Case Time Limit:1000MS
Description
B 地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。
给出 B 地区的村庄数 N,村庄编号从 0 到 N-1,和所有 M 条公路的长度,公路是双向的。并给出第 i 个村庄重建完成的时间 t[i],你可以认为是同时开始重建并在第 t[i]天重建完成,并且在当天即可通车。若 t[i]为 0 则说明地震未对此地区造成损坏,一开始就可以通车。之后有 Q 个询问(x, y, t),对于每个询问你要回答在第 t 天,从村庄 x 到村庄 y 的最短路径长度为多少。如果无法找到从 x 村庄到 y 村庄的路径,经过若干个已重建完成的村庄,或者村庄 x 或村庄 y 在第 t 天仍未重建完成 ,则需要返回-1。
Input
输入文件 rebuild.in 的第一行包含两个正整数 N,M,表示了村庄的数目与公路的条数。
第二行包含 N 个非负整数 t[0], t[1], „, t[N – 1],表示了每个村庄重建完成的时间,数据保证了 t[0] ≤ t[1] ≤ „ ≤ t[N – 1]。
接下来 M 行,每行 3 个非负整数 i, j, w,w 为不超过 10000 的正整数,表示了有一条连接村庄 i 与村庄 j 的道路,长度为 w,保证 i≠j,且对于任意一对村庄只会存在一条道路。
接下来一行也就是 M+3 行包含一个正整数 Q,表示 Q 个询问。
接下来 Q 行,每行 3 个非负整数 x, y, t,询问在第 t 天,从村庄 x 到村庄 y 的
最短路径长度为多少,数据保证了 t 是不下降的。
Output
输出文件 rebuild.out 包含 Q 行,对每一个询问(x, y, t)输出对应的答案,即在第 t 天,从村庄 x 到村庄 y 的最短路径长度为多少。如果在第 t 天无法找到从 x 村庄到 y 村庄的路径,经过若干个已重建完成的村庄,或者村庄 x 或村庄 y
在第 t 天仍未修复完成,则输出-1。
Sample Input
4 5 1 2 3
4 0 2 1 2
3 1 3 1 2
2 1 4 0 3
5 4 2 0 2
0 1 2
0 1 3
0 1 4
Sample Output
-1 -1 5 4
Hint
【数据说明】
对于 30%的数据,有 N≤50;
对于 30%的数据,有 t[i] = 0,其中有 20%的数据有 t[i] = 0 且 N>50;
对于 50%的数据,有 Q≤100;
对于 100%的数据,有 N≤200,M≤N*(N-1)/2,Q≤50000,所有输入数据涉及整数均不超过 100000
PS:那个样例输入有点问题,根据题意自己看着换行
做法:用floyd更新,当前询问到哪天(因为最后的询问第几天是保证不下降的),就用这天之前(包括这天)的解封的点更新最短路,最后如果询问的坐标有哪个点无法达到就输出-1
代码如下:
const
maxn=200;
var
ti:array[0..maxn] of longint;
f:array[0..maxn,0..maxn] of longint;
i,j,n,m,x,y,q,l,t,d,k:longint;
begin
read(n,m);
for i:=0 to n-1 do
for j:=0 to n-1 do
if (i<>j) then f[i,j]:=maxlongint div 3;
for i:=0 to n-1 do
read(ti[i]);
for i:=0 to m-1 do
begin
read(x,y,d);
f[x,y]:=d;
f[y,x]:=d;
end;
read(q);
k:=0;
t:=0;
for l:=0 to q-1 do
begin
read(x,y,d);
while (k<n)and(ti[k]<=d) do inc(k);
while t<k do
begin
for i:=0 to n-1 do
for j:=0 to n-1 do
if f[i,t]+f[t,j]<f[i,j] then f[i,j]:=f[i,t]+f[t,j];
inc(t);
end;
if (x>=k)or(y>=k)or(f[x,y]=maxlongint div 3) then writeln(-1)
else writeln(f[x,y]);
end;
end.