poj 1321

题目是:

                                                         棋盘问题
                                    Time Limit: 1000MS Memory Limit: 10000K

Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input


输入含有多组测试数据。 
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n 
当为-1 -1时表示输入结束。 
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。 
Output


对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input


2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output


2
1


原来我是想先创建一个isok函数,判断这个该位置是否满足题目要求。之后发现网友有更好的方法就是之间在深搜函数里面的for循环体现出来。另外,把char s[i][j]  的棋盘改成由0和1 表示的 node[i][j]  也让题目叙述更加简单。。。。


代码是:

#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;

bool stay[8],node[10][10];
char s[10][10];
int n,k,sum=0;

void dfs(int yy,int k)
{
	if(k==0)
	{
		sum++;
		return ;
	}
	else if(k<0)
		return ;
	for(int j=yy+1;j<n-k+1;j++)          //这个循环可以保证不在同一行
	{
		for(int i=0;i<n;i++)
           if(!stay[i]&&node[j][i]==1)  //!stay[i]保证了不在同意列
		   {
			   stay[i]=true;
			   dfs(j,k-1);               //次数从K剪到0
			   stay[i]=false;
		   }
	}
}

int main()
{
	int i,j;
	while(scanf("%d%d",&n,&k)!=EOF && n!=-1 || k!=-1)
	{
		memset(stay,0,sizeof(stay));
		for(i=0;i<n;i++)
		{   
			getchar();
			scanf("%s",&s[i][0]);
			for(j=0;j<n;j++)
			{
				if(s[i][j]=='.')
                   node[i][j]=0;
				if(s[i][j]=='#')
					node[i][j]=1;
			}
		}
		sum=0;
		dfs(-1,k);
		printf("%d\n",sum);
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值