题目是:
棋盘问题
Time Limit: 1000MS Memory Limit: 10000K
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output
2
1
原来我是想先创建一个isok函数,判断这个该位置是否满足题目要求。之后发现网友有更好的方法就是之间在深搜函数里面的for循环体现出来。另外,把char s[i][j] 的棋盘改成由0和1 表示的 node[i][j] 也让题目叙述更加简单。。。。
代码是:
#include <iostream> #include <string.h> #include <stdio.h> using namespace std; bool stay[8],node[10][10]; char s[10][10]; int n,k,sum=0; void dfs(int yy,int k) { if(k==0) { sum++; return ; } else if(k<0) return ; for(int j=yy+1;j<n-k+1;j++) //这个循环可以保证不在同一行 { for(int i=0;i<n;i++) if(!stay[i]&&node[j][i]==1) //!stay[i]保证了不在同意列 { stay[i]=true; dfs(j,k-1); //次数从K剪到0 stay[i]=false; } } } int main() { int i,j; while(scanf("%d%d",&n,&k)!=EOF && n!=-1 || k!=-1) { memset(stay,0,sizeof(stay)); for(i=0;i<n;i++) { getchar(); scanf("%s",&s[i][0]); for(j=0;j<n;j++) { if(s[i][j]=='.') node[i][j]=0; if(s[i][j]=='#') node[i][j]=1; } } sum=0; dfs(-1,k); printf("%d\n",sum); } return 0; }